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1. Introduction 
TrUBot is an autonomous ground vehicle designed and developed to compete in the Intelligent Ground Vehicle 
Competition (IGVC). The robot embodies a robust fusion of real-time perception, decision-making, and motion 
control systems, engineered to navigate complex outdoor environments with high reliability and adaptability. 

This marks the first time researchers from the LACASA  (Laboratory of Advanced Control, Autonomous Systems, 
and Automation) at the University of Bridgeport will participate in the IGVC. TrUBot represents the lab’s 
commitment to advancing research in intelligent robotics and real-world autonomous mobility. The project 
serves both as a technical milestone and a platform for applying state-of-the-art algorithms and systems 
integration in a competitive, outdoor robotics environment. 

2. Organization 
 

 
The TruBot team at the University of 
Bridgeport is composed of students 
from a variety of academic disciplines. 
Despite the team’s small size, 
comprising only six members, they 
initiated the project in early February. 
The TruBot team encompasses 
mechanical engineers, software 
engineers, electrical engineers, 

security engineers, and simulation engineers. Given the constrained timeline, each member collaborated across 
disciplines to provide support to other teams in a peer-review capacity, thereby ensuring that each component of 
the design was completed to the highest standard. This systematic approach guaranteed that at least one individual 
reviewed each phase of the system life cycle for implementation, with an additional reviewer or tester involved in 
the process. Consequently, the team successfully ensured that all project aspects were completed within a three-
month timeframe. 
 

Figure 1 Organization 
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3. Design Process 

 
Figure 2. Design Process Workflow  

 

3. 1 Autonomous Robotic Body Design 
The initial design plan has not changed much but the addition of other humans joining the fabrication team refined 
every detail of the building. The pointed front of the X Y axis of the chassis was intended for a very quick obstacle 
avoidance maneuver. The two wheel design with the wheels as far back as would allow and the payload and 
batteries centrally located also remained from the original design. Staying away from multiple moving or combined 
parts was achieved by c and c design for the base of the robot. Once the single piece of steel was laser cut, the work 
of the build really began. The original design of the wheels was to have the axle supported on both sides like a wheel 
barrel to keep the weight of the vehicle off the axle. We achieved this goal by placing a pillow block with ball bearings 
and a bore hole equal in diameter to the axle and the wheels bore holes. The pillow blocks are placed on either side 
of each wheel and bolted to the chassis. After attempting several different width and diameter wheels we ended up 
with a seven-inch diameter by a one- and three-quarter inch wide plastic wheels. The difficulty of finding a wheel 
with an eight-millimeter bore hole to match the diameter of the motor axle. It was very difficult to find the correct 
wheels without a ball bearing surrounding the bore hole. This difficulty was overcome by plugging the half inch bore 
hole of the wheel that worked and re drilling the center at eight millimeters.  

The very first obstacle that was presented was the connection between the motor and the encoder as well as the 
wheel. The idea the team was working with initially was to connect the motor and encoder by chain. This proved 
extremely problematic, and as a result a gear box was considered and planned. After much deliberation and 
redrafting this also was rejected in favor of a through design by using a motor that has an embedded encoder with 
the wheel connected directly to the shaft of the motor/encoder. Payload delivery is the mission and without dropping 
it as a priority a fully enclosed storage compartment was the original design. One team member took this concept 
to the next level by building a steel mesh cage that is bolted closed. The floor of the chassis is covered in non-
conductive material that will protect the possibility of shorts.  

Motor covers were designed and built as well as a steel arch to house the stop button and the operation lights. A 
cage was constructed to represent the body that will be filled out by plastic coverings. 



University of Bridgeport  IGVC 2025 

 

 5  
 

4. Hardware 
TrUBot is built on a robust and modular hardware platform designed for reliable operation in outdoor environments, 
meeting the performance and safety requirements of IGVC 2025. The hardware architecture balances powerful 
computation, precise motor control, and real-time sensing in a compact footprint. Below is a detailed description 
of the main hardware components: 

4.1 Drive System 
• Motors: Two 12V high-torque brushed DC motors (100 kg/cm torque) with embedded quadrature encoders 

are used for differential drive control.  

• Motor Controller: A SmartDrive Duo dual-channel motor driver manages motor power and direction using 
PWM and direction signals from the microcontroller. It supports feedback from the motor encoders for 
speed estimation. 

4.2 Sensing and Perception 
• LiDAR: The robot is equipped with an RPLiDAR A1 360° laser scanner to detect obstacles and perform real-

time environment mapping. 

• Depth Camera: An Intel RealSense D435i depth camera provides RGB-D perception and includes an 
integrated IMU (accelerometer and gyroscope), which is used for orientation estimation and sensor fusion. 

• IMU: The embedded IMU from the D435i is fused with encoder feedback on the ROS 2 side for improved 
localization and odometry. 

• GPS Module: A high-precision GNSS receiver is used to determine global position. The GPS data is fused 
with other localization inputs and plays a critical role in mission-level planning, such as defining and tracking 
global goal coordinates during the Navigation Challenge of the IGVC. 

4.3 Computation and Control 
• Microcontroller: An Arduino Portenta H7 mounted on its official Portenta Breakout Board handles low-

level control, including: 

o Motor speed control. 

o Encoder feedback processing. 

o Light tower control via relay. 

o RC receiver input. 

o Publishing velocity and encoder data via micro-ROS. 

• Onboard Computer: An Acemagic M2A mini-PC runs ROS 2 (Humble), managing high-level perception, 
planning, and decision-making. It connects to the Portenta H7 over USB using micro-ROS serial 
communication. 

4.4 Power Distribution 
• Batteries: Two 12V sealed lead-acid batteries provide power for motors and electronics. Each subsystem is 

protected and powered through a central Power Distribution Board. 



University of Bridgeport  IGVC 2025 

 

 6  
 

• DC-DC Converters: 

o A 12V to 5V step-down converter powers the Portenta H7. 

o A 12V to 19V boost converter supplies regulated power to the onboard computer. 

4.5 User Interface and Safety 
• Start Button: A physical push button is mounted on the chassis to manually activate the robot. 

• Remote Kill Switch: A Flysky FS-i6S radio transmitter and receiver allow operators to remotely stop the 
robot during testing or competition runs. 

• Emergency Stop: A large emergency stop button disconnects the motor power in critical situations. 

• Status Indicator: A multi-color light tower controlled by the Portenta via a relay module indicates system 
status: 

o Green: Autonomous Mode. 

o Red: Emergency Stop. 

o Yellow: Remote Control Mode. 

 

5. Electrical 
5.1 Power Supply Overview 
The robot’s electronic and power system is designed to ensure reliable and isolated operation of both 
computational and actuation subsystems. The architecture employs two independent 12V batteries, each 
dedicated to a specific subsystem: 

• Battery 1: Supplies power to the onboard computer. 
• Battery 2: Supplies power to the drive motors via a dual-channel motor controller. 

This separation provides both power isolation and electrical noise reduction, improving system stability and 
reliability during high-load operation. 

5.2  ACEMAGIC Computer Power 
The onboard computer responsible for high-level processing, perception, and control tasks is the ACEMAGIC mini 
PC, which requires a 19V input for operation. To adapt the 12V battery output to this requirement, a DC-DC boost 
converter (12V to 19V) is used. 

• Input: 12V from Battery 1. 
• Output: 19V regulated to power ACEMAGIC. 
• Purpose: Ensures stable operation of the computational unit regardless of battery voltage drops during 

runtime. 

This design isolates the computing unit from motor-induced voltage spikes, common in mobile robotic platforms. 
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5.3 Motor Power and Control 
The robot uses two 12V DC motors for differential drive locomotion. These motors are directly powered by Battery 
2 and are controlled using a SmartDriveDuo-30 motor controller, which supports bidirectional speed and direction 
control. 

• Input Power: 12V from Battery 2. 
• Control Signals: Serial or PWM commands from the ACEMAGIC mini PC. 
• Motor Driver: SmartDriveDuo-30 (supports 30 amp per channel). 

The motor controller receives desired velocity commands from the ACEMAGIC via a microcontroller (e.g., 
Arduino Portenta or Due running micro-ROS). These commands are typically based on /cmd_vel messages 
published from the robot’s ROS 2 control stack. The controller then drives the motors with appropriate PWM 
signals to match the desired speed. 

5.4 Safety Devices and Integration 
To ensure safe operation during development, testing, and autonomous missions, the robot incorporates multiple 
safety mechanisms, both electronic and mechanical. These systems are designed to provide clear operational 
status feedback and allow for immediate intervention in case of emergencies. 

Safety Light Tower 

A multi-color safety light tower is installed on the robot to indicate its operational state visually: 

• Green Light (Solid): The robot is powered on and in manual or standby mode. 
• Yellow Light (Flashing): The robot is actively running in autonomous mode. 
• Red Light (Flashing): Indicates a fault, emergency stop, or manual intervention required. 

This real-time visual feedback allows nearby operators to quickly assess the robot's current mode and respond 
accordingly. 

5.5 Mechanical Emergency Stop Button 
In addition to the remote E-Stop, the robot is equipped with a physical emergency stop button mounted on its 
chassis. Pressing this button: 

• Instantly cuts off power to the motor controller or disables motor output. 
• It is designed to be easily accessible and robust, even with gloves. 
• Redundant with the RC stop for enhanced safety. 

E-Stop via RC (Remote Emergency Stop) 

A wireless emergency stop (E-Stop) is implemented using an RC (radio control) system. If the operator detects 
unsafe behavior or an imminent collision, they can immediately cut off the motor commands via RC. 

• Mechanism: Interrupts command signals sent from the PC to the motor controller. 
• Range: The FlySky FS i6S has an impressive range, offering up to 1 kilometer (0.62 miles) in optimal 

conditions. 

This provides reliable and remote safety overriding during the competition or in uncontrolled environments. 
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 Figure 3. Schematic Layout 

6. Software 

6.1 Lane following 
Lane following was implemented using the raw RGB camera image. The detection logic resides in the detect_lane() 
function within the Fusion-2.py script. This function accepts the image as a required input and includes eight 
optional hyperparameters that can be tuned for different environments. The lane detection process begins by 
thresholding the image in the HSV color space to isolate white and yellow lane markings. The resulting binary mask 
undergoes morphological operations and Gaussian blurring to reduce noise and close small gaps. Canny edge 
detection is then applied to extract lane edges, followed by the Hough Line Transform (cv2.HoughLinesP) to detect 
continuous lane segments. 

This custom pipeline was chosen over the YOLOP (You Only Look Once for Panoptic Driving Perception) based 
approach due to its improved performance in preserving lane continuity, especially around curves and intersections. 
YOLOP tended to leave gaps in the lane mask, whereas this method produced more consistent and reliable line 
detection in the team's Webots simulation environment. 

(The green lines indicate the lanes highlighted below for the lane following.) 
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  Figure 4. Lanes and Path Planning 

6.2 Mapping and localization 
The mapping consists of four sensors and three key components. The four sensors include an IMU (Inertial 
measurement unit) for position and orientation, a GPS (Global Positioning System) for waypoint location, a LiDAR 
(Light Detection and Ranging) for local object detection, and a camera for lane, object, and cost detection. The three 
components are localization of the current x, y, and theta of the vehicle, goal point detection, and mapping, which 
utilizes RRT* to create the waypoints in the map.  

Localization forms the core logic within a class named RobotLocalization. The code combines several references 
taken from https://www. youtube. com/watch? v = J 77 kNrfYKoE and https://medium. com/@ zillur- rahman/how- 
to- use- the- ros- robot- localization- package- 534 fe04014d3. This class utilizes the left and right motors, as well 
as the IMU, to estimate the autonomous car's position using differential drive and encoder readings. For each loop, 
the message is provided on the Fusion node; however, it can also be implemented on the Odometry node if desired. 
The sample for the team's Webots simulation is "X: 478.93  Y: 719.24  heading: 0.83”. From the perspective of the 
camera, this corresponds to pixel positions 478 and 719, with a heading at an angle along the x- axis of 1 degree. 
The localization will publish the x, y, and theta, representing the direction the car is heading.   

The second and subsequent key component of map generation is goal generation. The objective of goal generation 
is to identify a point, either near or distant, that the mapping should strive to achieve.    Within the Fusion-2.py code, 
a method named get_next_goal_with_lane is referred to. It can utilize server key components from the lane, LiDAR, 
and camera maps. As depicted in the image below, which illustrates object detection (object detection will be 
further discussed in Section 6.3) and lane detection, the lane detection algorithm was able to identify lanes using 
the Hough lines P to detect the yellow and white lines, allowing for the detection of lanes around corners and “S” 
curves. The LiDAR is used to help navigate obstacles near the vehicle, such as cones and barriers.  

The final component is path planning using the Rapid-exploring Random Tree Start (RRT *). The planning logic 
implement code is implemented in the RRT _ Star. py, which was adapted 
https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/RRTStar/rrt_star.py. RRT* was 
selected due to its unique adaptability and ability to handle both static and dynamic obstacles. However, during 
testing, the code was modified and improved to enhance its performance. During testing, the map from the 
Webots simulation is shown below. 

This is a sample taken from the starting point to the goal point, as a green polyline connecting the robot’s start and 
goal points in figure 4 above. 

6.3 Object Detection 

It’s extremely light design and real-time inference capability on embedded systems led us to choose YOLO11-Nano 
(YOLO11n), which is perfect for the traffic cones detection. Our main goal was to add traffic cones—objects missing 
from its original COCO-trained model—to YOLO11n's perceptual repertoire so that our robot could consistently 
identify cones. We therefore obtained a committed traffic-cone dataset from Roboflow consisting of more than 
2,000 YOLO-formatted images with normalized bounding-box annotations. At the same time, we put together a 
YOLO-formatted COCO128 subset, including the original 80 COCO classes. All cone annotations (originally marked 
as class 0) were remapped to class index 80 before merging, and our class list was expanded to 81 entries; file 
names were prefixed with "coco_" or "cone_" to prevent conflicts. Then we created a YAML configuration file defining 
train, validation, Number of classes 81, and the full class names by combining image and label directories into single 
training and validation folders. Using transfer learning, we retrained YOLO11n on this combined dataset for 100 
epochs at 640×640 with 16 batch size. The retrained model detected traffic-cone class. Figure 1 shows the traffic-
cone sample distribution per training batch; Figure 2 shows qualitative inference findings on IGVC course video 
validating effective cone detection. 
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Figure 5. Traffic cone Training Batch                                     Figure 6. Traffic cone detection 

7. Simulation 

7.1 Overview 
this chapter represents the process of constructing a high‑fidelity virtual environment in Webots simulation for the 
IGVC 2025 competition held in Parking Lot 37 as we can see it in figure. 

 
Figure 7. IGVC 25 Auto-Nav Course 

7.2 Webots Simulation 
Webots is an open source and multi-platform desktop application used to simulate robots. It provides a complete 
development environment to model, program and simulate robots. 

7.2.1 Webots Features 
We used Webots R2025a because it has the following features : 

Direct interaction with OpenStreetMap allows genuine geographic locations to be converted into 3D map, 
therefore preserving accurate topology and layout. As we can see in the following figure, we used OpenStreetMap 
to take the real map for the competition. After cropping the area, the saved OSM file that can convert into Webots 
world using World Generation. 

python importer.py --input=IGVC.osm --output=IGVC.wbt 

to produce IGVC.wbt, representing Oakland parking lot 37. 
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         Figure 8. OpenStreetMap (parking lot 37)  

The Flexible Scene Graph provides a node-based architecture (PROTO and Solid nodes) for adding, removing, 
and modifying scene components including lanes, cones, obstacles, and ramps without starting over from 
scratch. 

 
Figure 9. IGVC course on webots simulation 

High fidelity integrated physics engine (ODE) and a strong sensor library (camera, LIDAR, IMU, GPS) provide 
realistic interactions and data collecting. 

This 3D simulation was very helpful for testing the object detection and lane following models before testing it in 
the real world course. 

We can utilize standard ROS 2 topics, services, and transforms directly within the simulator thanks to its smooth 
integration with ROS 2. utilizing the webots_ros2 library. 

7.2.2 Course & Robot Customization 
To make our simulation the same as the real competition course with our robot, we add the 

following  :                                                                                                                                                                          

                 
Figure 10. Simulation workflow 
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                                                                   Table 1. Added Parts of Simulation  

8. Autonomous Navigation Task 
 

The vehicle's autonomous navigation system, based on 
the Robot Operating System (ROS2), is regulated by the 
Fusion Controller node, which oversees data 
integration from various sources, including localization, 
LiDAR, cameras, GPS, path planning, and control 
velocity. The localization system, as detailed in Section 
6.2, acquires the x and y coordinates, as well as the 
angle at which the vehicle is heading, through 
information obtained from the motors and the Inertial 
Measurement Unit (IMU). Subsequently, the process 
node determines, based on established thresholds, 
whether to utilize the camera or LiDAR system. The 
camera is employed in scenarios where lanes are 
present, and only a single obstacle is detected; 
conversely, LiDAR is utilized when an obstacle is 

identified within a range of four to five meters. 
Based on the camera input and the established 
thresholds, the system assesses the 

availability of lanes and ascertains whether waypoints or obstacles necessitate navigation. These inputs identify the goal 
points, after which the start and goal points are provided to the RRT* algorithm for the establishment of the optimal path. 
Ultimately, the speed commands are generated by the control velocity controller, which determines the appropriate speed 
(ranging from one to five miles per hour) to dispatch to each motor. Each motor operates independently; therefore, the 
control velocity must account for the differential slip of each tire for every command issued.   

Figure 11. Navigation Flow 
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9. Cybersecurity Analysis 
In autonomous racing, ensuring the security and reliability of robots is crucial. The risk of software disruption by rival 
teams is a significant concern. To address this, a risk management framework is applied to identify vulnerabilities, 
model potential threats, and assess their impact. Thus, a comprehensive approach is taken via applying the NIST 
Risk Management Framework (RMF) and NIST AI Risk Management Framework (AI RMF), threat modeling with 
STRIDE, a model of threats that used to help reason and find threats to a system, and selecting controls aligned to 
high-impact risks. Rigorous implementation and penetration testing in the pit area will ensure that even a 
determined rival team cannot compromise safety or performance. 

9.1 Attack Surface & Vulnerability Assessment 

• FlySky FS i6S RC (2405.5–2475.0 MHz, according to https://fcc.report/FCC-
ID/N4ZFLYSKYI6S/2911062.pdf): RF jamming, replay, spoofing of E-Stop or control channels. Potential to  
loss of emergency control or malicious robot commands. 

• micro-ROS: Open ROS topics over Wi-Fi / 5 GHz backhaul, unauthenticated message injection, MITM. 
• ROS Nodes & YOLO11-Nano: Unpatched libraries, insecure ROS parameter server, buffer overflows. 

Potential to Code execution, sensor-data manipulation. 
• Motor Controller Interface (SmartDriveDuo-30): Insecure serial/UART commands, lack of authentication 
• GPS: Spoofing or jamming, resulting in incorrect waypoint data. 
• LiDAR & Camera (YOLOP): Sensor spoofing (laser reflectors), adversarial images (camouflage cones) 
• USB / JTAG on Arduino Portenta/Due: Unlocked bootloader, firmware reflashing 
• Onboard PC (ACEMAGIC M2A): OS vulnerabilities, exposed SSH/RDP, missing disk encryption 

9.2  Risk Management and Threat Modeling 

The NIST Risk Management Framework (RMF) is a set of guidelines that helps organizations manage and reduce risks 
to their information systems and data. The process involves seven key steps: prepare, categorize, select, implement, 
assess, authorize, and monitor. These steps provide a structured approach to identifying and mitigating risks, 
ensuring the security and integrity of information systems and data. 

Threat STRIDE Category Likelihood Impact Risk Level 

RF Jamming / Spoofing of RC/E-Stop Tampering, Denial Medium High High 

Unauthorized ROS Command 
Injection 

Spoofing, Elevation Medium High High 

GPS Spoofing Repudiation, Tamper Low–Med Medium Medium 

Firmware Reflash via USB/JTAG Tampering Low High High 

Adversarial Camera Input (YOLOP) Elevation, Tamper Low Medium Medium 

Table 2. Threat Modeling 

The NIST AI RMF helps AI risk governance across four core functions—Govern, Map, Measure, and Manage—to 
ensure trustworthy, robust, and secure unmanned or autonomous vehicles. 

To mitigate cybersecurity risks of robots, several control measures can be implemented. For RF link protection, 
encrypted RC and E-stop signals can be used, such as integrating AES-256 radio modules or utilizing FlySky firmware 
with rolling codes. Additionally, RF-jamming detection can be enabled through a spectrum sensor that triggers a 
fallback to a manual kill switch. Secure ROS communications can be achieved by enabling SROS2, which encrypts 
topics and enforces node certificates, as well as implementing namespace segmentation to restrict critical motor 

https://fcc.report/FCC-ID/N4ZFLYSKYI6S/2911062.pdf
https://fcc.report/FCC-ID/N4ZFLYSKYI6S/2911062.pdf


University of Bridgeport  IGVC 2025 

 

 14  
 

commands to authenticated nodes. Host hardening measures include secure boot and firmware signing, disk 
encryption, and host firewalls. Physical port controls can be implemented by disabling unused ports and logging 
any connections. Furthermore, sensor integrity can be ensured through GPS anti-spoofing using multi-constellation 
GNSS with signal authentication, and camera/LiDAR filtering can be validated with sanity checks to prevent false 
detections. Furthermore, by layering AI RMF on the top of conventional RMF, which can ensure the computing stack 
not only resists traditional cyber-attacks but also remains reliable and safe under adversarial AI/ML threats. 

9.3 RF Penetration Test 

Target: Autonomous Racing Robot (FlySky FS i6S RC link @ 2405.5–2475 MHz & micro-ROS Wi-Fi) 

Scope & Objectives: Assess security of the 2.4 GHz RC/E-Stop link and robot’s Wi-Fi-based micro-ROS 
communications. Identify vulnerabilities to jamming, replay, spoofing, and unauthorized command injection. 
Validate detection and mitigation mechanisms under real-world pit-area conditions. DOI: 
10.14722/vehiclesec.2023.23037 

  
Figure 12. GNU Radio Companion Diagrams used with HackRF One 

Environment & Tools:  

• HackRF One: Wideband TX/RX SDR for jamming, spectrum analysis, packet capture as shown in Figure 12 
• DragonOS: Kali-based preconfigured SDR distro with spectrum-analysis and decoding utilities 
• GNU Radio Companion: Custom flowgraphs for real-time modulation/demodulation and signal injection 

Expectations & Findings:  

• Reconnaissance: Passively monitored the robot’s RF emissions in the pit area over 30 MHz–10 GHz using 
HackRF One + GNU Radio. Identified control channel center frequency (~2439 MHz), bandwidth (~2 MHz), 
and typical packet timing. 

• Sweep Jamming: Generated continuous-wave and swept-tone jamming signals across 2425–2455 MHz. 
Measured operational degradation: control latency, packet loss rate, and range reduction. 

• Packet Replay: Recorded valid RC packets with HackRF One. Replayed at varied power levels and timing 
offsets to test acceptance by motor controller. Crafted modified command sequences to attempt 
unauthorized steering/braking signals. 
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• Protocol Injection: Reverse-engineered packet structure in GNU Radio—frame delimiters, parity, rolling-
code fields. Attempted live injection of malformed/unauthenticated frames to observe robot behavior and 
error handling. 

The RF penetration test using HackRF One, DragonOS, and GNU Radio revealed critical vulnerabilities to jam and 
replay attacks on the FS i6S link. By adopting encrypted/rolling-code radios, jamming detection, and FHSS, the 
robot’s wireless safety and control channels can be significantly hardened against adversarial interference. 

10. Performance Assessment 
TrUBot has undergone a series of performance validation tests to ensure its readiness for the IGVC 2025 
competition. These tests focused on evaluating speed, maneuverability, operational endurance, and system 
reliability under realistic operating conditions. 

During mobility trials, TrUBot successfully exceeded the IGVC 2025 minimum speed requirement of 1 mph, 
demonstrating smooth and stable motion across various terrain types. The robot maintained consistent control at 
low speeds, a critical requirement for precise navigation during lane following and obstacle avoidance tasks. 
Although the exact maximum speed is yet to be determined, initial results indicate that the platform can operate 
well beyond the minimum threshold. 

Battery endurance was tested with a full payload of 20 pounds, simulating competition-level mission conditions. 
TrUBot sustained uninterrupted operation for approximately 40 minutes, which comfortably satisfies the expected 
task durations within the IGVC environment. This performance highlights the effectiveness of its power distribution 
strategy and overall energy efficiency. 

Further testing confirmed the robot's ability to maintain stable localization, accurate command following from 
/cmd_vel, and consistent sensor data publishing (IMU, LiDAR, and wheel encoders), validating the robustness of 
the integrated ROS 2 and micro-ROS systems. 

Overall, TrUBot has demonstrated reliable performance in both autonomous control and teleoperation modes, 
laying a strong foundation for real-time decision-making and long-duration field deployment during the 
competition. 
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