
Intelligent Ground Vehicle Competition 2025

Manipal Academy of Higher Education

Project MANAS

Design Report

STEVE

I certify that the development of the vehicle, STEVE, described in this report, has been
equivalent to the work in a senior design course. The students of Project MANAS have
prepared this report under my guidance.

Ashalatha Nayak

Professor

Department of Computer Science & Engineering
Date: 15.05.2025

Team Members

Artificial Intelligence Sensing and Automation Mechanical

Asmit Paul Ashwin Modey Aadya Jha

Janak Shah Davasam Kartikeya Aditi Jain

Mrigaank Mouli Kaustubh Pandey Anvith Jasti

Om Kumar Kartikeya Singh Farshad Lavangia

Tanmay Singh Bains Sachin Sushil (Team Captain) Mahua Singh

Vivek Singh Sudeep Sharma Mohit Nambiar

mailto:hiasmitpaul@gmail.com
mailto:ashwinmodey05@gmail.com
mailto:aadyaj0305@gmail.com
mailto:janak.sh41@gmail.com
mailto:davasamkarthikeya@gmail.com
mailto:jainaditi2005@gmail.com
mailto:sufy1707@gmail.com
mailto:kaustubhofficial.kp@gmail.com
mailto:anvithinsta@gmail.com
mailto:okhere21@gmail.com
mailto:singhkartikeya742@gmail.com
mailto:farshad.lavangia@gmail.com
mailto:tanmaybains.2005@gmail.com
mailto:schctl@gmail.com
mailto:mahuasingh91@gmail.com
mailto:vivek0819@outlook.com
mailto:sudeep220604@gmail.com
mailto:mohitnambiar70@gmail.com


1. TEAM ORGANIZATION & DESIGN PROCESS

1.1. Introduction

Project MANAS, the official AI and robotics team of Manipal Academy of Higher Education (MAHE), proudly presents

STEVE, our entry to the Intelligent Ground Vehicle Competition (IGVC), 2025. We spent the last year developing a new au-

tonomous platform, based on the lessons and knowledge we gained from our previous iterations. Each member of our interdis-

ciplinary team contributed greatly to ensure that we create something truly novel. STEVE is the culmination of these efforts,

representing a holistic upgrade to our UGV.

1.2. Organization

Project MANAS comprises 42 undergraduate members pursuing various fields of engineering. The team is organized into four

subsystems:

• Artificial Intelligence - Develops the software stack of the UGV.

• Sensing and Automation - Responsible for electronics and power distribution, actuator control, and sensor suites.

• Mechanical - Designs and manufactures mechanical components of the UGV.

• Management - Oversees finances, logistics, PR, and sponsor outreach of the team.

The team is managed by a group of senior Board members, who comprise subsystem heads, the Team Manager, the Technical

Head, and the R&D Head. Senior members of the team guide and supervise its operation. Through a system of regular meet-

ings, and shared resources, the team is able to collaborate with each other effectively.

1.3. Design Process & Assumptions

To effectively manage and coordinate tasks leading up to the development of STEVE, an approach adapted from the Integrated

Product and Process Development (IPPD) lifecycle was adopted. This approach was well-suited to the cross-disciplinary nature

of the team, allowing for the concurrent development of individual components of the UGV.

Following extensive research, the design process of the UGV

was divided into subsystems, with the design individualized

into isolated components. Using this approach, the develop-

ment of the IGVC 2025 bot was structured into parallel design

and process planning tracks. This initial design was refined

through continuous iterations and effective team communi-

cation, ultimately resulting in detailed designs. Once each

component was completed, it was integrated into a complete

prototype.

The design and implementation were carried out over a span

of 8 months, with each team member averaging approximately

560 hours of work. A total expenditure of 7500 USD was in-

curred for the acquisition, maintenance, and replacement of

components.

Figure 1. Design Process

2. SYSTEM ARCHITECTURE

2.1. Significant Mechanical, Power, & Electronic Components

STEVE ’s mechanical and electronics suite has been selected based on simulations and analysis to ensure that all components

perform adequately in their operational range. All components have a significant margin of safety, which ensures reliable bot

operation.



2

Category Component Model

1. Processors

Computer Asus TUF A15

Communication Module STM32F401CCU6

Drive Controller STM32G491RET6

2. Peripherals
E-Stop Radio nRF24L01 Transceiver Module

Status Lights Adafruit Neopixel Strip

3. Sensors

LiDAR Ouster OS1

Stereo Camera Stereolabs ZED 2i

GPS Hiwonder GPS unit

IMU Hiwonder 10-axis IMU

4. Power
Battery 6S 30,000 mAh Tattu Battery

Inverter RS PRO 400W Inverter

5. Motors BDC Motors Rhino 24V 60RPM IG52 Motor

Table 1. Significant Components

2.2. Safety Features

STEVE incorporates multiple safety mechanisms to ensure adequate operation of the bot within the competition environment.

The bot includes a comprehensive E-Stop system that can be triggered mechanically or through a remote switch. Additionally,

STEVE incorporates a safety indicator light mounted on the chassis of the bot. The safety light indicates the mode of opera-

tion of the bot. A solid light indicates the bot is in manual mode, and a blinking light indicates that the bot is operating au-

tonomously.

In addition to these competition-specified safety features, we have included our own set of custom safety features to ensure

smooth operation of the bot.

• If the Driver Controller detects abnormal operation of the motors for an extended period of time, it will halt the opera-

tion of the motors. Additionally, any loss of communication will also trigger this mechanism.

• The custom-built Power Distribution Board (PDB) features 30A fuses, which in the event of overcurrent draw will auto-

matically shut down power to all critical components.

• Current and voltage sense resistors on the PDB also allow the power state of the bot to be monitored, shutting down

power in case abnormal spikes are detected.

2.3. Significant Software Modules

Our software stack has been divided into various modules, based on their functionality and purpose:

• Perception - Responsible for detection of lanes, potholes and obstacles for the Auto-Nav challenge, and detection of

pedestrians. The module is a mix of Deep Learning and traditional algorithmic approaches to obstacle detection.

• Localization - Fusing odometry from multiple sources(LiDAR, wheel encoders) to accurately estimate the robot’s pose,

while ensuring it is immune to noise.

• Mapping - A dynamic representation of the bot’s surroundings as an occupancy grid for effective path planning.

• Goal Selection - Determines intermediate navigation goals based on the current map and dynamically adapts the se-

lection approach based on the bot’s location and the obstacles detected. A control node manages the switching between

different strategies.

• Navigation - Utilizes motion and path planning techniques to compute the most efficient trajectory to the target, using

the selected goals as references.

2.4. Integration of UGV subsystems

The UGV system begins with sensors that gather environmental data, connected directly to a laptop running dedicated soft-

ware to collect, filter, and publish this data to ROS topics. Based on the sensor input, a map is generated, and the Goal Gener-

ator analyzes this map to continuously publish new goal positions. The Planner then calculates a path to these goals and sends

movement commands (cmd_vel). These commands are converted into RPM values using the robot’s physical parameters and

sent to the control units via USB. The microcontroller translates these RPM values into PWM signals to control the motor

drivers, which in turn power the motors. It also reads encoder feedback and uses a PID controller to ensure the motors main-

tain the desired speed accurately.

3. EFFECTIVE INNOVATIONS

3.1. Mechanical

3.1.1. Caster Suspension Linkage

One of the major shortcomings of our previous bot, NOVA, was its inability to effectively climb ramps, which significantly lim-

ited its operational versatility. This year, the issue was addressed head-on by implementing a new suspension system with a



3

TPU-based vibration damping mechanism and a front-rear caster linkage. This upgrade has greatly enhanced the bot’s ability

to traverse uneven terrain and tackle inclined surfaces with stability and control, effectively overcoming one of the most critical

limitations of the earlier design.

A T-slot extends across the chassis, linking the caster wheels with a shock absorber at the rear caster. The T-slot running down

the middle of the frame is supported through a pivot mechanism, allowing it to rotate. This mechanism provides for increased

travel for the front caster when it is met with uneven terrain, with the linkage forcing the casters to maintain contact with the

ground at all times. On the other hand, we have worked on making electronics and other hardware mounts out of TPU so as to

isolate them from any impulses or high-frequency vibrations.

3.1.2. Dynamic ZED-Camera Movement System

With the team’s participation in both AutoNav and Self-Drive this year, the field of view needed by the Software Stack is dif-

ferent based on the conditions that the bot will be facing. One of the major reasons for designing a mechanism that allows the

ZED-Camera to change its height based on its surroundings is to provide the most optimal field of view (FOV) for mapping its

environment. This feature in turn allows for increased performance in our runs, providing an optimal viewing angle at all times.

The extending mechanism utilizes lead screws and a stepper motor, allowing for smooth and precise control over the camera po-

sition, resulting in a total of 350 mm of travel.

(a) Caster Suspension (b) ZED Mount

Figure 2. Mechanical Innovations

3.1.3. Modular External Paneling

Carbon fibre was chosen as the material for the external paneling for our bot due to its high strength-to-weight ratio, stiffness,

structural rigidity, and resistance to corrosion. This decision allowed us to cut down 10kg of weight and increase its perfor-

mance in adverse weather conditions.

Magnetic Couplings are used for the panels present at the most accessed regions, such as the payload bay, electronics compart-

ment, and laptop compartment, allowing for easy access whenever required.

3.2. Electronics

3.2.1. Modular Control Architecture

This year, in order to align with our goal of a modular design, the hardware control functions have been split into two units,

i.e, the Drive Controller and the Communication Module. With this split comes improvements in our communication methods,

namely, the availability of CAN-FD and RS-485 buses on board. CAN-FD in particular is a notable solution in the automotive

industry, owing to its high reliability, speed, and ease of application. These incorporations are significant in improving our bot’s

architecture to allow for more complex controller setups.

3.2.2. Static Code Analysis of Firmware

All the controller firmware has been written from the ground up using the Rust language and open-source toolkits. Built-in fea-

tures of the Rust language allow static code checks to be performed before the firmware is deployed, ensuring that no memory-

misuse bugs occur and allowing for high-performance and reliable behavior.

3.3. Software

3.3.1. Quadtree-based Submap Management

Storing multiple revisions of the global map introduces significant overhead, especially in memory-constrained systems or

when operating in real-time. To address this, a Quadtree-based map representation is employed. The hierarchical structure of

Quadtrees enables efficient spatial partitioning, allowing regions with uniform occupancy to be represented compactly while pre-

serving higher resolution in areas with complex features. This reduces both the memory footprint and inter-node communica-

tion overhead, making it well-suited for scalable multi-resolution mapping in robotic systems.

3.3.2. Filtered Depth Image Mapping with Polygonal FOV Estimation

Instead of processing all points, a mask is applied to the RGB image to extract only relevant ones. Using corner points from the

corresponding masked depth image, a polygonal boundary is defined on the occupancy grid. Obstacle points within this region

are then iterated over, avoiding full-grid traversal.



4

3.3.3. Map Slicing

To manage time efficiency of algorithms, occupancy grids of the environment are sliced to a local area surrounding the bot. In

addition, the maps are further revised to extract features such as nearest lanes and fill in gaps via interpolation. Multiple maps

are combined with each other to give modules the relevant information.

4. DESCRIPTION OF MECHANICAL DESIGN

4.1. Design Overview

The mechanical subsystem forms the backbone of STEVE ’s platform, enabling robust structural support for all other subsys-

tems. The design and analysis workflows are performed in Fusion 360 and Ansys to simulate stress, vibration, and thermal

loads. Components are fabricated using a combination of CNC waterjet cutting, radial drilling, FDM 3D printing, and a Mitre

saw. STEVE ’s compact footprint and calculated torque outputs ensure effective navigation of the competition obstacle course.

4.2. Structure

4.2.1. Chassis

(a) Chassis Design

Parameter Value

Mass 65 kg

Length 3.5 ft

Width 3 ft

Height 3.9 ft

Max Torque 16 N-m

(b) Chassis Parameters

Figure 3. Overview of the chassis.

STEVE ’s frame is constructed using 30mm×30mm aluminum T-slot profiles, known for their modularity, strength, and

lightweight nature. The use of aluminum corner brackets ensures high rigidity while maintaining design adaptability. The T-

slot arrangement has been redesigned to centralize weight distribution and accommodate additional modules like the extending

ZED-Camera mount and suspension linkage.

4.2.2. Compact Footprint

STEVE ’s compact 3ft×2ft footprint optimizes maneuverability, enabling efficient navigation in constrained environments such

as warehouses and healthcare facilities. The reduced form factor minimizes turning radius and facilitates more predictable dy-

namics, thereby improving sensor calibration accuracy and enhancing the performance of localization algorithms.

4.2.3. Vibration Control

The updated chassis now incorporates a reinforced carbon fiber mount composed of two slanting 3K 200GSM 2×2 twill rods for

the ZED-Camera. This reinforced mounting architecture increases overall stiffness, reduces structural resonance, and improves

image stability. The angled support geometry offers enhanced vibration damping, particularly during acceleration and direc-

tional changes, leading to more stable imaging by the ZED-Camera.

4.3. Drivetrain

STEVE employs a compact drivetrain configuration with cen-

trally located drive wheels and caster wheels at the front and

rear for enhanced stability. The motor shaft is supported by

dual bearings and connected to the wheels via M8 bolts ar-

ranged in orthogonal planes, ensuring force distribution across

two shear surfaces. The central axis layout allows precise, pre-

dictable turns by eliminating body swing, reducing navigation

errors, and improving sensor accuracy through minimized iner-

tial disturbance.

Figure 4. Drive Train

4.4. Suspension

Given the relatively smooth asphalt surface of the course, a full fledged active suspension system was initially deemed unneces-

sary. However, test runs revealed intermittent loss of traction, particularly on slopes and during transitions between level sur-

faces and ramps. To mitigate this, we introduced a passive mechanical compensation system using a central pivot and shock ab-

sorber assembly that balances load distribution between the front and rear caster wheels. This setup ensures consistent ground



5

contact by passively adapting to minor elevation changes, improving drivetrain efficiency and preserving directional stability.

Additionally, the integrated dampeners help reduce structural vibrations, contributing to smoother motion and protecting sensi-

tive onboard electronics.

4.5. Weatherproofing

This year, in order to expand the conditions in which the bot

can perform, gaskets have been utilized throughout the chas-

sis and body panels to effectively seal critical components

from external elements such as dust and water. Additionally,

wheel coverings were also incorporated to ensure that the mo-

tor and drivetrain remain protected during operation. With

these enhancements, the bot now meets the IP55 protection

standard, providing reliable resistance against dust ingress and

low-pressure water jets – making it well-suited for a variety of

outdoor environments.
Figure 5. Wheel Hub

5. DESCRIPTION OF ELECTRONICS & POWER DESIGN

5.1. Overview

To achieve the goal of future-proofing and extensibility, the electronics architecture of STEVE has been designed to be as mod-

ular as possible. This was a drawback we encountered with our previous iteration, NOVA, where the system was highly special-

ized and features could not be added easily. We achieve this flexibility by isolating essential system functions. The responsibil-

ity of motor control is delegated to the Drive Controller Unit. All other sensors and radio communication are handled by the

Communication Module.

Figure 6. Overall Electronics Architecture

5.2. Power Architecture

The system’s DC power is supplied by a 6S lithium-polymer battery rated at 30,000 mAh. The DC power is converted into

AC via a commercially available 400 W inverter converting 24 V DC into 230 V AC. The total current draw is monitored via

a Shunt Resistor and a Current Sense Amplifier that sends an analog signal to the ADC of the Communication Module.

Based on conservative estimates, the setup consumes roughly 500 W under typical loads and up to 700 W at full capacity –

equivalent to currents of 22 A and 32 A at 24 V, respectively. The power to the BDC motors is routed through a Solid-State

Relay (SSR), which facilitates an immediate power isolation through the E-stop in case of an emergency.

On the power distribution board, a 24 V to 5 V buck converter provides constant 5 V supply. A 30 A automotive fuse is used

to safeguards the Cytron drivers in case of a sudden power surge —automotive fuses being both fast-acting and simple to re-

place.

5.3. Sensor & Control Units

5.3.1. Dedicated Sensor Units

To enable robust environmental perception and accurate localization, our system incorporates four dedicated sensor units. Each

of these units serves a specific role in the overall sensing and control architecture:



6

Figure 7. PDB Design

Battery Type Lithium Polymer

Voltage Rating 6S (22.2V to 25.2V)

Capacity 30,000 mAh

Discharge Current 25C

Nominal Runtime 60 min

Full-load Runtime 40 min

Table 2. Battery Specifications

1. Ouster OS-1 LiDAR - The Ouster OS-1 is a 3D LiDAR with a 120 m range and 45° vertical FOV. We used it for ob-

stacle detection and Direct LiDAR Odometry (DLO).

2. ZED 2i Stereo Camera - The ZED 2i is a high-performance stereo camera with a 110°×70° field of view and up to 20

m depth sensing. We used it for lane and object detection to aid autonomous decision-making.

3. Hiwonder IMU Module - The Hiwonder IMU is a 10-axis sensor with 200 Hz output, used for magnetic heading

(ENU) in NavSat Transform and motion data for EKF to enhance localization.

4. Hiwonder GPS Positioning Module - The Hiwonder GPS module offers < 1m accuracy and multi-constellation sup-

port. It is used for global positioning and waypoint-based navigation.

5.3.2. Control Units

1. Asus TUF A15 laptop - The main computer consists of an AMD Ryzen 7 7735HS processor and an Nvidia RTX 4050

GPU. It runs the core ROS system and handles all high-level control and processing tasks.

2. Communication Module - The communication module connects to the laptop via USB (CDC) and manages commu-

nication along with additional onboard functions. The module forwards command velocities and direction to the Drive

Controller over the RS-485 bus.

3. Drive Controller - The Drive Controller MCU interfaces directly with the motor drivers, issuing PWM signals to drive

each wheel, and monitoring its RPM to process wheel odometry.

4. Cytron MDDS30 - The BDC driver is responsible for controlling the left and right BDC motors. It provides multiple

safety features, such as protection against stray PWM signals before initialization.

5.4. Communication Module

Figure 8. Communication Flow



7

The communication module handles all peripheral functionality of STEVE. It is responsible for connecting the Drive Controller

to the computer, receiving data from GPS+IMU units, and controlling the safety lights. In addition, the module fully handles

the remote E-Stop functionality via the NRF24L01 radio transceiver attached on board. Details of the E-Stop implementation

are described in Section 5.6.

5.5. Drive Controller

The Drive Controller is implemented as an independent, self-sufficient control unit. The sole responsibility of the drive con-

troller is to listen to cmd_vel fed into one of its input streams, and control all the on-board motors to exhibit the requested

velocity.

Each motor has an independent adaptive PID, allowing for precise tuning across a wide range of speeds. The BDCs selected are

Rhino 24V 60RPM IG52 Extra Heavy Duty Planetary Geared DC motor. Combined with our 14-inch wheels, this gives the bot

a maximum linear velocity of 1 m/s (∼ 2.2 mph). The BDCs have a stall torque output of 37.24 Nm, capable of handling the

weight and payload on the bot. The control system hierarchy is described in the diagram shown below.

Figure 9. Drive Control Loop

(a) Communications Board (b) Drive Controller Board

Figure 10. Controller Boards

5.6. E-Stop

The E-Stop requirements of the competition are implemented by a hardware-based solid-state relay (SSR) and are managed by

the Communication Module. Therefore, there are two ways of triggering the E-Stop:

• Remote

• Mechanically

The Remote E-Stop is triggered when the E-Stop sequence is received on the nRF24L01 radio module. This causes the Com-

munication Module to trip the SSR electronically. Additionally, a mechanical switch can also physically trip the SSR. When the

SSR is tripped, all power to the motors is cut, stopping the bot.

6. DESCRIPTION OF SOFTWARE SYSTEM

6.1. Perception

6.1.1. Lane Filtering

Lane detection begins by converting sensor images from RGB to HSV color space, which separates chromatic information from

intensity and improves segmentation under varying lighting. A range-based filter is then applied in the HSV space to extract



8

lane-colored regions. Polynomial line-fitting refines the segmented areas by modeling the lanes as continuous curves and sup-

pressing noise. The result is a binary mask that accurately captures the lane boundaries for navigation.

6.1.2. Obstacle Detection

2D Laser Scan from the LiDAR is used to detect barrels for AutoNav (Refer to Section 7.2). YOLO is used in combination with

a height-based filtering algorithm to detect the various obstacles mentioned in Self-Drive (Refer to Section 8.2).

6.2. Sensor Fusion and Localization

Precise location is attained through combining data from several sensors which vary in range, frequency, and accuracy. This

enables our system to have a reliable estimate of the vehicle’s pose and motion accurately both on a local and global scale.

6.2.1. Direct LiDAR Odometry (DLO)

Direct LiDAR Odometry is used to compute the vehicle’s motion directly from dense 3D point clouds generated by the LiDAR

sensor. This method aligns successive LiDAR scans to estimate relative movement over time. While DLO offers high accuracy

and strong performance in unstructured environments, it operates at a relatively lower frequency compared to other sensors.

Therefore, its output is used to stabilize and correct the drift from faster but noisier sources using Dual EKF.

6.2.2. Dual EKF Architecture

A Dual Extended Kalman Filter (EKF) setup is used to enhance the robustness of state estimation:

• The Local EKF processes high-frequency inputs such as wheel encoder data, and IMU readings. This filter maintains a

continuously updated estimate of the robot’s position and velocity in real-time.

• The Global EKF fuses low-frequency but globally accurate data such as GPS coordinates and DLO-based odometry. This

filter compensates for long-term drift in the local EKF by periodically correcting its estimate with global references.

This two-layer EKF architecture ensures that the system maintains both responsiveness and long-term accuracy.

GPS LiDAR IMU Wheel Odometry

Datapoints x, y x, y, yaw, vx, vy, vyaw yaw vx, vy, ax, ay x, y, vx, vy

Type of Data Latitude/Longitude Odometry IMU IMU Odometry

Scope Global Global Local Global Local

Table 3. Comparison of Sensor Data Characteristics

6.2.3. Localization

To enhance positioning accuracy in known environments, the system integrates map-based localisation techniques. Specifically,

we utilize Adaptive Monte Carlo Localization (AMCL), a probabilistic algorithm that estimates the vehicle’s pose on a pre-

saved map using particle filtering. By continuously comparing real-time sensor observations—such as LiDAR scans—with the

static map, AMCL identifies the most likely position and orientation of the vehicle. In case no pre-saved map is recieved, the

above mentioned Dual EKF module is used for localization

This method significantly improves localisation stability, especially in areas with weak or unavailable GPS signals. It also re-

duces computational overhead, as it eliminates the need for constant re-mapping. When fused with the global and local EKF

outputs, AMCL further enhances the accuracy and reliability of the pose estimate, enabling safer and more confident naviga-

tion.

6.3. Mapping

To enable efficient and accurate real-time mapping for

navigation, a depth-based occupancy grid approach is

adopted and enhanced with selective probabilistic fil-

tering. Depth images from a ZED2i stereo camera are

processed with a lane mask to isolate relevant naviga-

tional features while discarding background clutter. Se-

lected depth pixels are projected into 3D space using the

camera’s intrinsic parameters and mapped onto 2D oc-

cupancy grid coordinates. An instantaneous occupancy

grid is generated by marking the corresponding grid cells

as occupied, and a log-odds framework refines occupancy

probabilities over time through multiple observations over

time. Moreover, a rolling window mechanism is imple-

mented, shifting the mapped region as the robot moves.

This limits memory usage. Updates are restricted to the

visible field of view, ensuring the system remains respon-

sive for real-time operation.

Figure 11. Mapping



9

6.4. Lane Following

To ensure stable lane following, goals are generated directly from the lane map without relying on the robot’s orientation. The

nearest white and yellow lane points are first identified using breadth-first search. A hill-climbing search is performed along

each lane, selecting points that minimize angular deviation relative to the last two goals, promoting smooth forward motion.

The candidate goal is computed as the midpoint of the optimized points. This is accepted if it satisfies the angular heuristic.

The goal’s orientation is set from the average of recent position estimates to maintain heading stability.

The first two goals (the start position and a point 1.5 meters ahead) are initialized, with subsequent goals computed dynami-

cally using the described method. By focusing on lane geometry and minimizing orientation dependence, the technique ensures

reliable center-lane tracking even during turns or partial occlusions, supporting robust and consistent forward movement.

6.5. Path and Motion Planning

The move base package, provided by Robot Operating System (ROS), is used for motion and path planning, accompanied with

a ROS bridge to maintain compatibility with ROS 2. The local waypoint generated by the goal-generation process serves as the

input for this system.

The A* algorithm, provided by the NavFN plugin in move base, is used for path planning. A* is well-suited for this purpose

due to its high performance and speed, efficiently finding the shortest path to the target while avoiding obstacles based on the

map data.

For motion planning, the TEB (Timed Elastic Band) planner is employed, and offers several key advantages:

• Time-Optimal Trajectories - TEB considers the dynamic constraints of the robot, generating time-optimal paths that

respect velocity and acceleration limits.

• Dynamic Obstacle Avoidance - It effectively avoids moving obstacles in real-time by continuously updating the trajec-

tory based on the robot’s surroundings.

• Efficient Path Planning - The planner uses optimization-based techniques to generate smooth and feasible paths,

avoiding unnecessary computational overhead.

By combining the strengths of A* for path planning and the TEB planner for motion planning, our system ensures fast, effi-

cient, and collision-free navigation in complex and dynamic environments.

7. AUTO-NAV

7.1. Overview

Figure 12. Auto-Nav Architecture

7.2. Perception

The incoming laser scan from the OS1 LiDAR, fused with odometry data, is used to detect barrels by analyzing the 3D point

cloud for barrels. Using the robot’s estimated position from odometry, the detected barrels are accurately localized on the

global map. To prevent collisions, we inflate an area around each detected barrel on the global map. This inflated costmap in-

creases the cost around the obstacles which forces the path planner to avoid paths that come too close to the barrels, ensuring

safe navigation around obstacles.



10

7.3. Goal Calculation

7.3.1. Lane Following

Using the approach described earlier in Section 6.4, we compute goals for lane following, given occupancy grid constructed from

white lanes detected.

7.3.2. GPS Following

Once the bot enters no-man’s land and reach the first GPS waypoint, the goal calculator automatically switches to only publish

the GPS coordinates provided. We apply Nav-Sat transforms which produce an odometry output with the position of the GPS

in the map frame, and are published as goals to the motion planner.

8. SELF-DRIVE

8.1. Overview

Figure 13. Self Drive Architecture

8.2. Object Detection and Avoidance

The obstacle detection framework combines deep learning-based object recognition with depth-based geometric validation to

ensure accurate and reliable identification of environmental hazards.

Primary detection is performed using YOLO (You Only Look Once) object detection models, which provide real-time identifica-

tion of key obstacles, with the relevant mAP50-90 (mean average precision) metrics listed out below:

Object Train Test

Stop Sign (YOLO + OCR) 0.92 0.88

Tyre (YOLO) 0.70 0.69

Pedestrian (YOLO) 0.68 0.64

Traffic Drum (YOLO) 0.75 0.71

Table 4. Model Accuracy

While YOLO provides high-confidence object classification, additional validation steps are necessary to maintain robustness,

particularly in complex or cluttered environments. To this end, a height-based mask is applied to the depth image. This mask

leverages prior knowledge of the expected physical dimensions of each obstacle type, enabling the system to filter out erroneous

detections.

Building upon the perception capabilities, the system implements a deliberate and responsive obstacle avoidance mechanism.

Following validation, the global coordinate position of each confirmed obstacle is computed and recorded. Upon detecting an

obstacle at a new position, an appropriate response is triggered: a request is issued to the action server to execute a predefined

avoidance maneuver. The system awaits confirmation of action completion before resuming its navigation tasks, ensuring that

all behaviors are executed in a controlled and asynchronized manner.



11

8.3. System Dashboard and Diagnostics GUI

Figure 14. System Dashboard and GUI

We have developed a System Dashboard GUI as part of our software stack to support testing, debugging, and real-time moni-

toring during development and field runs. The dashboard provides a user-friendly interface to observe important system infor-

mation while the robot is operating.

The GUI includes features like a live camera feed with detections, ROS topic frequency and health status, active ROS nodes,

display current robot position, and velocity commands , along with many more useful tools. This dashboard has been extremely

helpful during integration and testing by allowing us to quickly spot and resolve issues in the system.

8.4. Mapping

Figure 15. Mapping Architecture

To support different navigation tasks, we generate specialized lane maps instead of using a single, general-purpose map. These

maps are tailored to highlight specific features like lane type, nearby segments, or continuity.

The process begins with the map-constructor, which uses a depth-based approach described earlier(Refer Section 6.3) to cre-

ate separate occupancy grids for white and yellow lanes. The map-localiser then restricts the size of these maps to keep them

lightweight and suitable for real-time processing. To handle missing or incomplete lane data, the map-reviser fills in gaps

through interpolation and identifies the nearest lanes. Finally, the multi-map assembler combines or subtracts these maps to

produce task-specific variants required by goal computation and navigation algorithms.

8.5. Goal Calculation

8.5.1. Lane Following

For lane following, we extract the nearest white lane markings and the yellow middle lane markings, to establish the current

lane (left or right) that the robot is following on the occupancy grid. On this map, we employ the same algorithm explained in

Section 6.4 to compute the goal.

8.5.2. Intersection Actions

• Right Turn - Refer to Figure 16a. Breadth-First Search is run on the map to find the nearest point on the white lane

and measure the offset distance. Using this, the algorithm follows the white lane across the intersection and sets a goal at

the same offset, oriented perpendicular to the current lane’s direction.



12

• Left Turn - Refer to Figure 16b. The algorithm uses DBSCAN to identify the two main lane clusters at the intersection

and compute their centers. It then finds the intersection point between the line connecting these centers and the robot’s

heading, setting it as the intermediate goal. A Breadth-First Search locates the left lane, and the initial offset from the

yellow lane is applied to determine the final goal, oriented perpendicular to the original lane’s heading.

• Lane Keeping - The algorithm uses Breadth-First Search to find the nearest points on the yellow and white lanes and

calculates their midpoint as the lane center. The goal’s orientation aligns with the current lane’s heading. A navigation

goal is then set at a fixed distance ahead along this direction and is updated as the bot moves forward, keeping it centered

in the lane.

(a) Right Turn (b) Left Turn

Figure 16. Intersection Actions

8.5.3. Parking

We utilise similar approaches to accomplish all three modes of parking:

• Pull In - The surrounding area is scanned for the parking area, and it’s trajectory is accordingly planned for entry. If

obstacle-free, goals along this path are published and followed.

• Pull Out - As the bot exits the parking area, it’s angular velocity increases proportional to the inverse tangent of 1/dis-

tance to smoothly align with the lane. The bot then halts 3 feet from a detected traffic drum.

• Parallel - Occurs similar to Pull In, with the final goal’s orientation being matched to the bot’s initial orientation, ensur-

ing a smooth, parallel entry into the parking spot.

8.5.4. Lane Changing

The robot receives a processed binary map (representing lane mark-

ings) and applies the DBSCAN clustering algorithm to group nearby

yellow pixels into clusters, effectively segmenting the yellow lane

marking. Using the robot’s current position within its lane, the al-

gorithm performs Breadth-First Search inside the cluster to find the

furthest point. Using geometrical calculations, it applies an offset, ex-

trapolating the furthest point on the lane marking to determine a new

goal position in the adjacent lane.

Figure 17. Lane Change

9. CYBER SECURITY ANALYSIS USING RMF

9.1. NIST Risk Management Framework (RMF)

The NIST RMF outlines a 7-step approach that organizations can adopt to cost-effectively implement and maintain their cyber-

security policies. This flexible framework ensures continuous monitoring and improved security posture. The steps include:

• Prepare - In this initial phase, the organization establishes readiness for RMF by defining roles and creating a strategic

plan.

• Categorize - The system is classified according to control requirements. Impact levels—based on confidentiality, in-

tegrity, and availability—are assessed and finalized.

• Select - With the impact levels and risk tolerance defined, appropriate controls are chosen, and a plan for implementa-

tion and oversight is developed.

• Implement - The selected security controls are integrated into the information system.

• Assess- An independent evaluation is conducted to verify that the controls function as intended and meet established

requirements.



13

• Authorize - A designated senior official, known as the Authorizing Official (AO), reviews the risk assessment to deter-

mine if the system’s risk posture is acceptable, granting formal authorization accordingly.

• Monitor- The system undergoes continuous monitoring to detect and respond to potential security threats.

9.2. Model the threats and analyze their impact

System Threat Description Confidential Availability Integrity Overall

GPS Waypoints If the GPS is altered the bot may go in

wrong direction

low moderate high high

Odom If the odometry is altered bot may not

know its relative position

low high high high

ROS Commands If velocity commands are intercepted the

bot can be controlled

low high high high

Version control credentials Getting access to version control creden-

tials can be used to change bot code

high low high high

Wireless E-stop command Rival team may send a wireless estop

command to sabotage the run

high moderate low moderate

Bag files Bag files are only used for debugging, un-

likely to be a threat

low low low low

Onboard Computer The onboard computer acts like the cen-

tral node which can be used to control

everything

high high high high

Power Distribution Board The main board responsible for relaying

the commands to the parts

high high high high

Printed Circuit Board The board which receives sensor board

data, if modified can be used to send

wrong sensor data

high high high high

Detector If the detector produces false positives or

negatives, it may cause incorrect interpre-

tation of the environment

high low high high

Behaviour Manager If the behaviour manager is compromised,

the bot may take incorrect actions despite

correct inputs

low high high high

9.3. Cyber Controls and descriptions of their implementations

Goal Implementation Efficacy

AC-1 (Access Control)

Protecting code from being

modified by a rival team

Github is used to manage version control for

better security and access control

High: Delegating

version control to

Github reduces

risks the team has

to take

AC-4 (Information Flow Enforcement)

Protecting bot from receiving

commands from rival team

Only the onboard computer may be connected

to the internet and local parts are part of a lo-

cal network which is not accessible from the in-

ternet so only the parts on bot can communi-

cate with each other

High: Stops most

wireless attacks

targeted at on-

board parts

Receiving wireless ESTOP sig-

nal from rival team

The ESTOP signal will be encrypted using RSA

with a timestamp to stop man-in-middle or

someone else sending an estop command

Medium: Prevents

”man in the mid-

dle” attacks

SC-41 (Port and I/O Device Access)

Stopping rival team from

adding devices

Extra ports are blocked, and a custom circuit

board is employed to exclusively permit essen-

tial devices.

High: Stops rival

team from adding

malicious devices



14

Goal Implementation Efficacy

AC-10 (Concurrent Session Control)

Stopping rival team from con-

necting to central node

The central node only allows a set number of

devices to connect to it

High: Stops rival

team from connect-

ing to central node

IA-5 (Identification and Authentication)

To prevent unauthorized users

from gaining access to the on-

board computer

Each user has to enter a root password and a

separate login password, only accepted if there

is a minimum password length, at least 1 digit,

at least 1 uppercase character

Moderate: Bears

the brunt of the

most rudimentary

entry level attacks

10. ANALYSIS OF COMPLETE VEHICLE

10.1. Lessons learned during construction and system Integration

Throughout the build and design process, our aim was to determine the shortcomings of our previous design and improve on

those areas in a significant manner. This led us to the development of the suspension linkage across the two casters, overcoming

the difficulties we faced while traversing the ramp last year.

One key lesson we learned was the importance of choosing the right software early. We started with ROS1 but subsequently

switched to ROS2. This gave us better performance, more reliable communication, and was easier to scale. It also has a more

active open-source community, which was highly beneficial. This taught us how important it is to use software that can grow

with the project.

10.2. Potential Hardware Failures and their Mitigation

Failure Points Causes Solutions

ZED2i Camera Vibration Instability Loose movement from the lead screw

and vibrations from rough terrain

Addition of inclined carbon fiber rods

to form a triangulated brace for en-

hanced rigidity and minimizing lateral

deflection

Connection Integrity Issues Increased number of wires and compo-

nents

Designed a PCB and use of clip-on

connectors

SSR Failure at low temperatures Operation in suboptimal temperatures Introduction of gate driver to drive

the SSR

Overvoltage Excessive current draw Installation of fuses and setting ap-

propriate current bounds in the motor

drivers

Suspension Mount Fracture Concentrated stress at chassis attach-

ment points while traversing uneven

terrain

Use of compliant mounts and load-

spreading brackets to reduce stress

concentration

10.3. SIL Virtual Environment Testing

Testing in the real world is hard and time-consuming, and

problems are often difficult to debug. To save time and avoid

damage, we first test in simulation using Gazebo. Our vir-

tual robot matches the real one in size, weight, and sensor

placements. The simulated course mimics the real compe-

tition conditions with roads, lanes, obstacles, and a ramp.

Each run has random lane paths and obstacle positions to

test different cases.

Figure 18. Software In the Loop

10.4. Software Testing, Bug Tracking, and Version Control Process

We used GitHub for bug tracking and version control, organizing our development through protected branching strategies. The

main branch was reserved for deployment on the robot and kept secure, while feature-specific sub-branches were created for

each component of the Self-Drive and AutoNav competitions. Dependency management was handled through virtual environ-

ments to ensure reproducibility. For debugging and data analysis, we utilized GDB and ROS bags extensively, enabling step-by-

step debugging, logging, and replaying of robot behavior to gain deeper insights into system performance. These comprehensive

tests were designed to guarantee consistent performance in all expected real-world conditions.



15

Failure Points Causes Solutions

Lane Inconsistency Due to outliers and limitations in camera

inaccuracy, lanes can be captured inconsis-

tently in the costmap which can lead to an

incomplete map.

Goal generation (refer to Section 6.4) gener-

ates intermediate waypoints.

False detection by YOLO Deep learning models can never give us

100% accuracy, so false detections can oc-

cur.

A height-based filtering system is used to

validate the detection so it matches the ac-

tual object dimensions.

No possible path to goal Inaccurate costmap due to distorted image

data and phantom obstacles being mapped.

Navigation Recovery Mode: perform a 360°
scan to remap the local surroundings and

clear any incorrectly mapped obstacles.

Sensor Data Inaccuracy Accumulated error from GPS drift and

odometry.

Implemented Dual EKF (refer to Section

6.2.2) to fuse GPS and IMU for more robust

pose estimation.

Table 5. Perception Failure Points, Their Causes, and Our Solutions

10.5. Physical Testing to Date

• Mechanical: Mechanical testing of STEVE emphasized structural performance and vibration mitigation under dynamic

loading. A new suspension system was introduced to improve ground contact and shock absorption across uneven terrain.

This system was directly mounted to the chassis and tested for deflection and damping response, showing a notable im-

provement in ride stability and impact handling.

• Electronics: Most parts of the electronics system, including communication lines and the power distribution board, have

been tested and are working well. The motors and motor drivers have been fully assembled on the robot and tested, en-

suring smooth functionality. Safety systems like Emergency Stop (E-Stop) and safety lights have also been tested and are

working as expected. We are continuing to make improvements to the electronics stack to make it more efficient and reli-

able.

• Software: To make sure the software works reliably, we tested it in conditions similar to the ones in the competition, in-

cluding thorough checks of each part of the system.

– Mapping and obstacle detection were tested both during the day and night to ensure they work well in different

lighting.

– The navigation system was put through various conditions, including lanes that were partially visible and obstacles

of different shapes and sizes.

– GPS navigation was also tested to ensure it followed the planned routes accurately. Finally, detection models were

tested in tough situations, including cases where lanes were partially blocked.

11. INITIAL PERFORMANCE ASSESSMENT

STEVE was rigorously tested on makeshift AutoNav and Self-Drive courses, with the AutoNav course averaging a run time of

4 minutes per attempt. STEVE was able to reliably complete the courses and function tests, including dynamic obstacles and

ramps.

Runs Performed 152

Average Course Time 4min 02 seconds

Average Speed 0.6m/s

Max Speed 1m/s

Max Acceleration 1.4m/s2

Battery Life 40min

Waypoint Accuracy 0.1meters tolerance of the goal point

Distance at Which Obsta-

cles Are Detected

120meter LiDAR range for obstacles, 20meter ZED range

Planner Frequency 5Hz path update rate


	Team Organization & Design Process
	Introduction
	Organization
	Design Process & Assumptions

	System Architecture
	Significant Mechanical, Power, & Electronic Components
	Safety Features
	Significant Software Modules
	Integration of UGV subsystems

	Effective Innovations
	Mechanical
	Caster Suspension Linkage
	Dynamic ZED-Camera Movement System
	Modular External Paneling

	Electronics
	Modular Control Architecture
	Static Code Analysis of Firmware

	Software
	Quadtree-based Submap Management
	Filtered Depth Image Mapping with Polygonal FOV Estimation
	Map Slicing


	Description of Mechanical Design
	Design Overview
	Structure
	Chassis
	Compact Footprint
	Vibration Control

	Drivetrain
	Suspension
	Weatherproofing

	Description of Electronics & Power Design
	Overview
	Power Architecture
	Sensor & Control Units
	Dedicated Sensor Units
	Control Units

	Communication Module
	Drive Controller
	E-Stop

	Description of Software System
	Perception
	Lane Filtering
	Obstacle Detection

	Sensor Fusion and Localization
	Direct LiDAR Odometry (DLO)
	Dual EKF Architecture
	Localization

	Mapping
	Lane Following
	Path and Motion Planning

	Auto-Nav
	Overview
	Perception
	Goal Calculation
	Lane Following
	GPS Following


	SELF-DRIVE
	Overview
	Object Detection and Avoidance
	System Dashboard and Diagnostics GUI
	Mapping
	Goal Calculation
	Lane Following
	Intersection Actions
	Parking
	Lane Changing


	Cyber Security Analysis using RMF
	NIST Risk Management Framework (RMF)
	Model the threats and analyze their impact
	Cyber Controls and descriptions of their implementations

	Analysis of Complete Vehicle
	Lessons learned during construction and system Integration
	Potential Hardware Failures and their Mitigation
	SIL Virtual Environment Testing
	Software Testing, Bug Tracking, and Version Control Process
	Physical Testing to Date

	Initial Performance Assessment

