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2. Team Organization 

2.1 Introduction 

The Competitive Robotics Organization (CRO) at Virginia Tech is excited to introduce Bowser to this 

upcoming AutoNav Intelligent Ground Vehicle Competition (IGVC). Bowser has many upgrades, and a brand-new 

design compared to previous teams at Virginia Tech. 

2.2 Organization 

The team consists of 10 students from different engineering disciplines: Joe Bekiranov (computer 

engineering), Wyatt Dillon (electrical engineering), Tom Drinkwater (mechanical engineering), Yianni Fifis 

(mechanical engineering), Tim Fish (computer engineering), Cassie Freedlander (mechanical engineering), Sree 

Motukuri (mechanical engineering), Sam Ramey (computer engineering), Tommy Savory (computer engineering), 

and John Shebey (computer engineering). Bowser was broken into mechanical, electrical, and software subsystem. 

Each subsystem had a designated chief engineer that led weekly sub team meetings. Additionally, two juniors (Sree 

and Cassie) joined in February and worked on creating the driving mechanism for the Bowser plushie. Figure 1 

shows a team organization chart. 

 

 
Figure 1: Team Organization Chart 

The team also had weekly general meetings with Dr. Nowinski to give sub team updates, and make sure 

everyone understood the current state of Bowser. Additionally, the team meets twice a week in the lab to get work 

done and collaborate with other teammates. Each team member put in about 6 hours of work a week (not including 

meetings) for two 15-week semesters. This means the team has dedicated about 1500 total hours to the project. 

 

2.3 Design Process 

To develop a fully autonomous vehicle for the IGVC, the team used a waterfall approach with 5 major 

design phases as follows: 

Phase 1 Research and Planning: Looked at previous years IGVC team designs and created requirements 



Phase 2 Prototyping Initial Design: Built a prototype and made a bill of materials (BOM) once initial designs were 

made 

Phase 3 Subsystem Design and Development: Each sub team designed and built their subsystem 

Phase 4 Subsystem Integration: Integrated each subsystem of the robot and ensured that the sensors could 

communicate with each other and control the chassis of the vehicle. 

Phase 5 Testing and Validation: Tested the entire functionality of the robot and using a test track 

3. System Architecture 

Table 1: Significant Components 

Quantity Component Identification 

2 24VDC Brushless Motor Mechanical 

1 24VDC Lithium-Ion Phosphate 
Battery 

Electrical 

3 DC-DC Down Converters (19V, 
12V and 5V) 

Electrical 
 

1 Motor Controller Electrical 

1 Nvidia Jetson Orin Nano Electrical/Software 

1 Arduino Uno Electrical/Software 

1 Stack-On (Safety) Light Electrical 

1 Novatel GPS  Electrical/Software 

1 SICK LiDAR Electrical/Software 

1 Zed2i Camera Software 

The main safety features of the electrical system are the DC current breakers, finger-safe wire terminals, as 

well as neat and organized wire routing. This protects not only the devices on the robot but the people operating the 

robot as well 

The software team designed and implemented autonomous control for the robot using Robot Operating 

System (ROS). The software architecture consists of the following components: 

• Perception: The ZED camera and the SICK LiDAR provide the robot with vision and use this data to 

make decisions 

• Navigation: Nav2 is used to take the LiDAR and camera data and generate a cost map showing where 

nearby obstacles are 

• Path Planning: Uses a path planning algorithm like A* to find the most efficient path for the robot to take. 

This is done by using the cost map data and GPS waypoints 

• Control: Takes the desired path and converts it into motor speeds so the robot can move to the desired 

location 

 

A full system diagram can be found below in Figure 2. 



 

Figure 2: Software system design diagram 

The interconnection of the electrical and software systems is done through the use of serial communication 

interfaces both the Jetson and an auxiliary Arduino. The system diagram for electrical-software integration can be 

found in Figure 3. 

   

Figure 3: Hardware-Software communication system 



4. Innovations 

4.1 Software 

The software team's key innovation is the line detection system, which uses per-point GPU accelerated 

custom line detection for quickly and robustly classifying line pixels, instead of attempting to parameterize an entire 

line.  

This innovation was arrived at due to the lack of rotational and scalar invariance found in most line 

detection methods. Deep learning methods were researched, and while some segmentation architectures seemed 

promising, they were often weak to the intense rotational transformations that occur frequently in IGVC due to the 

nature of the course. This made pre-trained models brittle, and without sufficient data, fine tuning was difficult. 

Therefore, literature was searched, and the CERIAS characteristic was discovered. The per-point line detection fit 

our use case particularly well as it could be easily integrated into the costmap paradigm through a series of frame 

transformations from the camera.   

4.2 Mechanical 

The mechanical team completely redesigned Bowser this year. The prominent innovation is the drive train. 

Bowser’s drive consists of two independently driven motors at the center axis and two free spinning caster wheels; 

one at the fore and aft of the robot. 

The drive and component selection allows for Bowser to turn within its own footprint while mitigating the 

majority of the scrubbing friction experienced in turning. The driven wheels are mounted directly onto the frame of 

Bowser. The caster wheels are mounted on a pinned control arm which is supported by an air spring at the free end. 

This allows vertical deflection that permits the driven wheels to maintain contact with the ground while the robot is 

driving on, over, and off the ramp obstacle. 

5. Mechanical Design 

 

Figure 4: Final 3D Model of Bowser 

5.1 Chassis Overview 

The chassis serves as the robot’s load-bearing framework, supporting all components. The team chose a 
hexagonal frame made from T-Slotted aluminum extrusion for its strength, light weight, and modularity, allowing 
for design flexibility. Custom aluminum 6061-T6 angled brackets were created to maintain the robot’s shape and 
reinforce corners. The aluminum 6061-T6 baseplate acts as both a shaping template and the mounting surface for 
electrical components. 



 
Figure 5: Chassis without base plate mounted 

 
Figure 6: Frame with base plate mounted. 

 

 

5.2 Power Train Overview 

Bowser’s power train was designed to accelerate the robot and to support the major vertical loading. The 

power train is driven by two 24v DC brushless motors which each directly drive a 16-inch wheel. The 16-inch wheel 

was selected to raise the ride height of the robot such that there was optimal space to fit a suspension system for the 

caster wheels. The wheel size also balances factors such as speed, acceleration, force, and traction. 

 

Figure 7: Power train subassembly 

5.3 Caster Wheel Suspension System 

The caster wheel suspension system is designed to support vertical loads, provide longitudinal stability, 

absorb ramp impacts, and dampen oscillations without affecting the robot's turning radius. It features a pinned 

control arm with an 8-inch caster wheel at each end of the robot to enable a zero-turn radius. The pinned design 

restricts lateral and longitudinal movement while allowing rotation. An upgraded air spring was added to maintain 

consistent stroke length, provide reliable restoring force, and improve stability with its larger contact base.  

 

Figure 8: Caster Wheel Subassembly 



5.4 Weatherproofing 

To meet competition requirements for light rain conditions, the team designed protective housings for all 

sensitive electrical components. Each component was evaluated for potential water entry points, and custom 3D-

printed housings were developed based on this analysis and the robot’s design constraints. The housings were tested 

through simulated rain using a spray bottle and paper towels in multiple trials, confirming that all components 

remained operational and protected from water damage. 

5.5 Cooling Methods 

The mechanical team was responsible for ensuring all electrical components had proper cooling measures. 

The Nvidia Jetson and Arduino were the only components that required an independent cooling system. All other 

components were either in the open or did not require cooling. The housing for the Nvidia Jetson and Arduino 

featured internal pass throughs, vents, and a fan mounted on the bottom to ensure proper airflow was achieved. 

Additionally, the Nvidia Jetson is fitted with its own direct fan. The housing is shown in Figure 9. 

 

Figure 9: Nvidia Jetson and Arduino Housing without lid 

6. Electrical and Power Design 

6.1 Electrical Overview 

The electrical team designed and set up all the power wiring for the LiDAR, GPS, Arduino, Jetson, safety light, E-

stop, motors/motor controller, as well as all the necessary communication connections. The wiring was kept neat 

organized on the robot by using DIN rail, terminals, and wire harnessing. Additionally, circuit breakers and 

industry-standard electrical connectors were implemented to help protect equipment and people from electrical 

hazards. Figure 9 shows a complete wiring schematic of the power system. 



 

Figure 10: Circuit Wiring Diagram 

6.2 Battery Life and Runtime 

The power for the robot is distributed from the main 24VDC battery through the use of voltage terminals 

and industry standard wiring techniques. The battery in use can handle up to 25 Amp-hours which means the robot's 

maximum current draw must be under 25A. The robot running at maximum speed(5mph) draws roughly 13 Amps 

from the battery continuously which allows for a runtime of about 1.92 hours. Fortunately, the team has 2 batteries 

on hand which charge to full power within an hour, which will allow a dead battery to be easily swapped out and 

recharged before the next dies. 

6.3 Mechanical and Wireless Emergency Stops 

The mechanical E-stop requirement is met by installing a bright red button on the rear post of the robot 

which stops all commands from being sent to the motor controller which can be seen in Figure 10. However, the 

wireless E-Stop requirement is met by installing an HC-05 Bluetooth chip to the rear post that will be connected to a 

laptop. This laptop will be ready to send an ASCII signal that will perform the same action on the motor controller 

that the physical E-Stop does. 

7. Software System Design 

7.1 Line Detection Architecture 

Lines in the IGVC are a special challenge compared to traditional autonomous lane detection due to the 

greater invariance necessary to solve the problem. The robot must navigate through tight obstacle tracks, which 

requires it to rotate almost past orthogonal to the lane line. This means that not only must our algorithm spot lines in 

a way that is fully rotationally invariant, it also cannot rely on image clues for line orientation, since the image of a 

single orthogonal line could equivalently be the left or right line. [3] suggests that parameterization, segmentation, 

and anchor point methods are leading research-based methods for classifying a lane line. Anchor based methods 

were too rigid for our use, since they could not handle high rotational invariance without great modification. 

https://www.zotero.org/google-docs/?ZiCHNe


Furthermore, challenges are created in parameterization, since parametric functional forms for lines can be 

weak to certain line orientations (  cannot handle 'up'). Segmentation is promising and a considerable 

alternative but lack of training data and concern for our limited compute pushed us away. The team researched 

solutions in literature and eventually came upon [4]. 

7.1.1 Implementation 

The CERIAS spatial characteristic line detection algorithm takes in an image and runs a set of processing 

steps independently on each pixel in the image. For each pixel , the intensity of all angles and orientation 

aligned pixels for angle and direction is considered, . For each orientation and , the standard 

deviation of this pixel line is 

,  

where 

  

is the average intensity of the line. In the algorithm, this standard deviation measure is then used to accurately 

classify pixels on lines of uniform intensity of lines of width at least . The result of the algorithm is a list of 

coordinates that are expected to be on a line. The algorithm was first implemented in python and tested on CPU. The 

result of the algorithm on a real image from the course is seen below in Figure 11. 

 

Figure 11: Line Detection Algorithm Result 

7.1.2 Optimization 

The team optimizes the algorithm for our hardware by implementing it as a custom CUDA kernel. The 

kernel is written such that blocks are warp optimized, and we utilize one thread for every pixel. The intensity 

https://www.zotero.org/google-docs/?idGcxo


standard deviation along all can be estimated using a fixed size square window. We pre-calculate the intensity 

integral image and its square on the GPU for every image using the NVIDIA NPP library, then utilize the integral 

image in the kernel to estimate mean and mean square values for the standard deviation in  time. 

Critical sections of the algorithms were timed and logged. The algorithm was run on the 3000 x 4000 image 

above in fig 2. (~12 million pixels) The results of the benchmarking can be seen below in Table 2. 

Table 2: Line Detection Benchmark 

Hardware Language Execution Time (Seconds) 

CPU Python 39.37 

GPU CUDA/C++ 1.6 (24x speedup) 

 

7.1.3 Sensor Fusion Application 

This algorithm is nice because it has general purpose and could be functionally switched out for deep 

methods in use cases that have more data and compute available. A benefit of a general-purpose algorithm is ease of 

use in sensor fusion. The algorithm is shown on a camera image, but in fact works for any spatially local image. We 

make use of this by converting the Multiscan point cloud to a 2d image in the ground plane , and using the 

reflection intensity instead of pixel gray level. This leverages the 3d nature of the point cloud data over the camera, 

allowing us to take an effective slice of the ground and ignore all potential matches above ground in the camera 

image. With the speed-up from the GPU, we can run both the camera and LiDAR image through the kernel 

concurrently. The point data for each sensor is returned, and we fuse the point lists using a Bayesian Belief Network. 

This network utilizes per-sensor confidence in the form of sensor reported confidence or externally pre-computed 

precision and recall values to weight the incoming point lists. Due to the independence of these confidences, the 

network could easily handle more sensor types, so long as they could be usefully converted to a point list. The 

weighted point lists are averaged, and a static threshold is applied to determine binary line points. This fusion solves 

the problem of the noise detected in the algorithm output shown above. 

Finally, the fused point list is written directly to a custom NAV2 cost-map layer plugin, skipping past the 

need for encoding the line into parametric form. This process allows us to process insane sensor throughput and 

classify lines with maximum information at very high frequencies, while still giving plenty of compute to the rest of 

the system. 

7.2 Object Detection and Environmental Representation  

Obstacle detection in this system is functionally tied to environmental mapping. Since the robot is tasked 

with avoiding obstacles, this system uses mapping software and costmap layer tools to detect objects with the 

LiDAR. This system uses the Slam Toolbox library in conjunction with the Nav2 navigation library to accomplish 

this. Slam Toolbox is an open-source localization and mapping library that provides useful tools such as a costmap 

interface for environment representation, a behavior tree interface for simple and robust behavior control, and 

controllers and planner servers for centralized global and local planning. For obstacle detection, the team leverages 

SLAM and the Nav2 Voxel costmap layer plugin to create an accurate depiction of the environment and enable 

navigation to handle avoidance. 



7.3.1 Mapping, Localization and Control 

Our system combines real-time sensor data with historical data to create and continuously update a 

dynamic world model, which represents the environment around the robot. The robot collects current scene data 

through its LiDAR (SICK Multiscan 3D LiDAR), ZED2i Camera, and wheel encoders. The LiDAR provides 

detailed 2D scans and 3D point clouds, essential for detecting obstacles and mapping the surroundings, while the 

wheel encoders provide odometry data to track the robot's movement. Where the LiDAR fails, we utilize our ZED2i 

camera for lane line detection to ensure the robot stays in the bounds of the course.  

To improve the accuracy of the robot’s position, the wheel odometry and IMU data are integrated using the 

Extended Kalman Filter (EKF) from the robot_localization package. This process filters and combines these noisy 

sensor inputs to produce a more reliable estimate of the robot's position and orientation. The filtered odometry 

serves as the robot's pose estimate, providing a foundation for both localization and mapping. 

 

Figure 12: Map Using LiDAR, Encoder, and IMU Data 

The filtered data, along with real-time LiDAR scans, is then fed into the slam_toolbox for Simultaneous 

Localization and Mapping (SLAM). SLAM continuously updates the map of the environment by integrating new 

sensor data with previously collected data. This process allows the system to refine the map over time, creating a 

more accurate and comprehensive representation of the robot’s surroundings as it moves. 

Once the map is generated, it is passed into the Nav2 stack, which creates global and local costmaps used 

for path planning. These costmaps represent the robot’s environment, accounting for obstacles and other factors that 

influence navigation. When a goal is set, Nav2 generates a path to the destination, and velocity commands are sent 

via the /cmd_vel topic to the controller node, which executes the path by controlling the robot’s motion. 

Throughout this process, the robot continuously updates its world model by combining new sensor data 

with older data. This allows the system to refine both the robot's map and its position in real-time. The integration of 

current and historical data ensures the robot can maintain an up-to-date understanding of its environment, supporting 

obstacle avoidance, precise localization, and efficient path planning. By continuously updating and refining its world 

model, the robot can make real-time adjustments, navigate effectively, and follow the planned path while avoiding 

obstacles and considering its environment. 



Within the ROS system, control is directly derived from the created trajectory in Nav2. When the Nav2 

controller takes in a path from the planner, it creates the necessary linear and angular velocities to achieve its path. 

Due to the pub sub architecture of ROS, these velocities can easily be subscribed to and manipulated to find the 

necessary left and right wheel speeds. Calculations are done based on both the angular and linear velocities, as well 

as the length of the wheelbase. The calculated left and right wheel speeds are fed directly into the motor controller. 

This gives the robot the correct and intended motion from the Nav2 controller.  

7.3.2 Path generation and Waypoint Following 

The system keeps track of waypoints and uses a global plan to navigate towards those waypoints. However, 

direct navigation is ill-advised as the robot would attempt to escape the lines at most points in the course. Thus, a 

low priority is assigned to global goals, and local goals are instead given higher priority. Local goals are created by a 

path generator module that occasionally generates a look-ahead point to navigate to. This is used to maintain the 

robot's 'forward' behavior that is expected by the course. The look-ahead points are overridden by new goals on a 

timer, which is important because the actual global trajectory of the robot over the course is roughly circular, and not 

linear. By resolving a lot of small linear look-ahead goals, small changes in local heading due to course curvature 

are unproblematic. 

The system will eventually find a waypoint using the global plan. As the system finds its first waypoint, it 

changes into 'waypoint mode' to account for the landscape changes. Look-ahead points are disabled, and the robot 

can now directly navigate to the next waypoint directly. Local planning is still used for collision avoidance. The 

robot is able to navigate to the waypoints by using GPS data fused in through a Navsat GPS node, which converts 

GPS coordinates to the meter scale against our robot's base frame. In doing so, we can then transform the GPS 

coordinates to the map (world) frame and place the waypoints in the environment so they can be incorporated into 

planning. 'Waypoint mode' is exited upon finding the last waypoint, and look-ahead point generation begins again 

until the end of the course. 

9. Final Vehicle Analysis 

Table 3: Key Hardware Failures 

Failure Point Failure Mode(s) Mitigation Resolution(s) 

3D printed component 
mounts 

Cracking, delamination Reducing the use of 3D 
printed mounts for 
structural mounts 

Replacing with spare 
parts brought to 
competition, Emergency 
3D printer 

Poor Power Connections Failure to power up 
important hardware 

Implemented industry 
standard wiring 
techniques such as wire 
terminals and breakers 

Use the electrical safety 
inspection to ensure the 
connections are stable as 
well as bring the 
necessary tools to fix 
loose connections 

9.1 Mechanical Performance Analysis 

 The mechanical team was able to analytically prove that the robot could climb the ramp. Below are the steps 

taken to show this analysis. Since there are two motors that each output 130 in-lbs of torque, by Equation 1, the total 

driving force for two motors is 32.5 pounds. 

      𝐹𝑜𝑟𝑐𝑒(𝑙𝑏𝑠)  =  𝑇𝑜𝑟𝑞𝑢𝑒(𝑖𝑛 ⋅ 𝑙𝑏𝑠)  ÷  𝑅𝑎𝑑𝑖𝑢𝑠(𝑖𝑛)                                          (1) 



The total weight of Bowser with the payload is 135 pounds. The team was able to determine that the robot 

will be able to drive up the ramp obstacle by finding the maximum slope that the robot can climb by Equation 2. 

𝐹  =  𝑚𝑔 ⋅ sin(𝜃)   ⟹   32.5  =  135 ⋅ sin(𝜃)   ⟹  𝜃 ≈ 14°                  (2) 

The ramp obstacle will be a maximum of 15% grade. A percentage grade is the percentage of distance 

traveled horizontally to vertically. Therefore, we can estimate that the 14° slope is a 24.7% grade by Equation 3. 

%𝐺𝑟𝑎𝑑𝑒  =   tan(𝜃) ⋅ 100  ⟹  %𝐺𝑟𝑎𝑑𝑒  =   tan(14) ⋅ 100  ⟹  %𝐺𝑟𝑎𝑑𝑒  =  24.7%             (3) 

By this analysis, Bowser will successfully climb the ramp obstacle even after factoring in mechanical 

losses, friction, and other methods of error. By dividing the theoretical maximum grade by the competition grade, 

the factor of safety is 1.64. Furthermore, the team physically tested this by using a digital inclinometer and driving 

up a 10-degree incline. Bowser passed this real-world test successfully driving up and down the ramp. 

9.2 Integration Lessons and Failure Modes 

During the integration process we learned many lessons. The biggest and most recurrent lesson was to start 

simple and use modularity. If functionality is developed too far without testing, the failure modes compound and 

debugging becomes extremely difficult. Isolating tests for the smallest possible connection points allows for 

consistent fallback-style testing and failure mode isolation and speeds up both development and testing. 

Safety, reliability, and durability were top considerations in both design and testing for the team. Safety 

was made a priority during development by integrating the safety systems first, and in testing by ensuring the safety 

systems were operational at all times (both e-stops, safety light). Reliability and durability were tested by strength of 

printed components and addressed by trading weight for more stable components throughout testing where 

necessary. 

9.3 Software Project Management 

Software testing was performed using segmented subsystem sub system tests through a variety of methods. 

Testing harnesses were created through the NAV2 Commander API, which allows an interface to communicate with 

a live NAV server using a low-boilerplate python script. Tests were run on each of the detection, planning, 

controller, and actuation components individually, and diagnostics were collected via logs, ROS server inspection, 

and Rviz. Version control was maintained through GitHub, with regular commits on team-specific branches. Bugs 

were tracked through a ticket system on Notion; every bug has a ticket a comment thread with details and discussion 

about the bug. 

9.4 SIL Virtual Environment Simulation 

Our team chose to utilize Gazebo for simulation due to its robust real-world physics engine, support for 

highly customizable environments, and seamless integration with ROS. To replicate the testing conditions of 

previous competitions, we constructed a simulated course based on video footage and images from prior years. This 

included the placement of obstacles, potholes, lane markings, and other key environmental features. To ensure 

thorough testing and validation of our software systems, we also integrated a detailed model of our robot into the 

simulation. This model accurately reflects the physical dimensions and sensor placements of the real-world robot. 

The simulation proved especially valuable in the early stages of development, as our team had undertaken a 

complete hardware redesign. Without access to a physical prototype during that period, the Gazebo environment 

allowed the software team to continue developing, testing, and refining subsystems in parallel with ongoing 

hardware development. 

 



 

Figure 13: Simulated IGVC Course 

10. Unique Software, Sensors, and Controls 

The sensors and controls tailored for Autonav include the wheel setup and the line detection software. The 

design of the wheels allows for an in-footprint turn radius. This is specifically designed for this competition, where 

dead ends and tight switchbacks require robust movement to ensure that complex navigation can be performed 

efficiently. The line detection software is also specifically designed for this course. This software was researched 

specifically to fit the constraints of IGVC. It is specifically designed to be invariant to both scale and rotation, as 

well as account for line thickness and arbitrary curvature. 

11. Performance Assessment 

As of submitting this report, Bowser is nearing completion. The robot’s chassis and electronics are 

assembled and integrated with the vehicle. The software components are functional on their own but are still being 

tested and implemented on the vehicle. Although there is more software integration work to be done, we believe 

Bowser will be ready and fully operational by competition. 
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