

IGVC 2025 Design Report

Team: rACTor
Robot: Schoolbus

Date: May 15, 2025

Team Captain Ryan Kaddis rkaddis@ltu.edu

Members

 Devson Butani dbutani@ltu.edu

 Milan Jostes mjostes@ltu.edu

 Travis Bowman tbowman@ltu.edu

 Pranav Malik pmalik@ltu.edu

Faculty
Advisors

 Nicholas Paul npaul@ltu.edu

 Chan-Jin “CJ” Chung cchung@ltu.edu

Faculty Advisor Statement

I, CJ Chung and Nicholas Paul of the Department of Math and Computer Science at Lawrence Technological
University, certify that the design and development on the Schoolbus research platform by the individuals on the
design team is significant and is either for-credit or equivalent to what might be awarded credit in a senior
design course.

1

mailto:rkaddis@ltu.edu
mailto:dbutani@ltu.edu
mailto:mjostes@ltu.edu
mailto:tbowman@ltu.edu
mailto:pmalik@ltu.edu
mailto:npaul@ltu.edu
mailto:cchung@ltu.edu

2. Conduct Of Design Process, Team Identification And Team Organization

2.1 Team Introduction and Organization

Team rACTor (pronounced “re·ac·tor”, homage to the LTU’s ACTor platform) consists of undergrad students and
graduate students. The team was officially formed on January 14, 2025, and met every Tuesday evening for task
updates, group work, and discussion. Each member contributed at least 5 hours every week to designing,
fabricating, programming, documenting, and maintaining this year’s competition robot, Schoolbus. Tasks were
assigned to specific members of the team according to their proficiencies and prior experience.

Name Degree Program Primary Responsibilities Hours

Ryan Kaddis M.S. Computer Science Team Captain 600

Devson Butani B.S. Mechanical Engineering
M.S. Computer Science

Electro-Mechanical Architecture and Rapid
Prototyping, Component and Software Pipeline
Specification Development

600

Milan Jostes B.S. Computer Science Nav2, SLAM, LIO, and Simulation Environment 300

Travis Bowman B.S. Robotics Engineering,
B.S. Computer Science

Teleoperation, E-Stop, Kinematics and
Fabrication

200

Pranav Malik B.S Robotics Engineering Object Detection and Classification 100

Table 1: Team Members and Responsibilities

2.2 Design Assumptions and Process

As a results-oriented team, we employ an Agile workflow process and actively promote collaboration and quality
deliverables over hard deadlines. On our Tuesday meetings, we discuss the prior week’s accomplishments and
setbacks as well as plans for the coming week. In addition to weekly meetings, we devote Fridays to working
sessions, where members can work together to develop and test new ideas in an environment that supports
innovation.

Our design process aims to capitalize each member’s time spent, regardless of the status of the project as a
whole. This year will be our team’s first year designing and constructing a robot from the ground up, so we
leveraged each member’s time and abilities. Our design process over the months preceding the competition are
as follows:

1.​ Robot Design: Identify competition requirements and plan a suitable vehicle: including materials,
sensors, actuators, software, and funding.

2.​ Assembly: Obtain and construct necessary parts for robot functionality. Core software functions, like the
drive-by-wire system and sensor handlers, are prepared prior to hardware assembly such that the robot
is functional upon assembly.

3.​ Competition Preparation: Design solutions required for success at the competition. This includes robot
safety, waterproofing, maintenance, and software development like teleoperation, autonomous
navigation, and user experience.

4.​ Testing: Functions are thoroughly tested in a setting similar to that at competition. Methodologies and
results are recorded and well documented.

2

3. System Architecture of our Vehicle
Schoolbus is a custom-made autonomous robotic platform jointly sponsored by Dataspeed, and individual
donations. The system is equipped with a 3D Lidar, an RTK GNSS, a camera sensor, multiple IMUs, and an
all-new omnidirectional drivetrain. The sensors and actuators interface with a Raspberry Pi 5, which
communicates with a GPU laptop over ethernet on a local network. The robot receives power from an internal
portable power station. Significant hardware improvements have been made over the ACTor platform of
previous years, including major upgrades in LiDAR, GNSS, and computer hardware. Figure 2 shows a high level
component interface diagram.

Safety is placed at the forefront of everything we
do for the vehicle. Failure states are tracked at
every layer in Schoolbus, and appropriate
responses are taken. A BRB (Big Red Button) and
a radio controller enable a user to trigger an
emergency stop on a hardware level. Schoolbus
actively monitors its internals for faults, at
multiple layers, and is capable of triggering a
stop in the event of a sensor, actuator, software,
or network fault.

Significant software innovations have been made
for this year’s competition. The Schoolbus
software stack uses ROS2 Jazzy in Ubuntu 24.04.
In order to make our platform more extensible to
various tasks, we use ROS2 Navigation.

Figure 2: High Level Component Layers

Figure 3: High Level Operating Architecture

ROS2 Navigation enables sensor fusion techniques
for Simultaneous Localization and Mapping
(SLAM) and route planning in difficult
environments. Our omnidirectional controller
allows two modes of maneuvering,
“Double-Ackermann” and “Fixed Heading”. For the
specific IGVC tasks, Python scripts are used to
easily interface with our sensor and navigation
software. These scripts contain simple, high-level
code that are designed to complete individual
IGVC requirements. A web UI allows for users on
the robot’s local network to access sensor
information, load and execute scripts, and manage
robot controls.

3

4. Effective Innovations In Vehicle Design
There are many differences from other bots and improvements over the ACTor platform that sets Schoolbus
apart. Some of the major differences include:

●​ All-New Robot Design. Unlike the Polaris GEM e2 electric car ACTor was built on, Schoolbus is
custom-built by the members of team rACTor. Schoolbus is built to be light, highly-manoeuvrable, and
agile. An aluminum body balances structural stability and weight. 3D-printed PETG enables parts like
mounts, joints, and covers to be manufactured with sub-millimeter precision. The entire bot takes up only
38x32x40in, allowing for movement in tight spaces.

●​ Omnidirectional Four-Wheel Steering (4WS) System. Each of the four wheels on Schoolbus is individually
controllable in both linear and angular motion. This allows for unique movement options over conventional
robot models, including rotation-in-place, fixed-heading translation, and Ackermann-like control of both
the front and rear wheels, which we call “Double-Ackermann” control. In combination with the bot’s small
form factor, Schoolbus is able to navigate challenging environments and easily accomplish tasks that a
traditional robot would struggle to achieve.

●​ Middleware Improvements Using ROS2 Jazzy in Ubuntu 24.04. We have upgraded our ROS
implementation to ROS2 Jazzy over our previous ROS Noetic, keeping in line with industry standards.
ROS2 is not only more widely supported than ROS1, but is also far more secure. Upgrading our software
solutions to ROS2 allows for more programmer-friendly software development and easier code
maintenance for future projects and competitions. Ubuntu 24.04 is a significant upgrade over the
previously-used Ubuntu 20.04 in terms of support, security, and user experience.

●​ Professional Navigation Stack with ROS2 Navigation. ROS2 Navigation (Nav2) is a professional platform
for robot localization and navigation, enabling robots of various configurations to maneuver complex
environments. Nav2 is not only well-suited for the challenges presented by IGVC, but is also capable of
handling additional future projects. By implementing Nav2 in our control stack, we can ensure that
Schoolbus is a capable robotic platform, whether at competition or conducting research.

●​ State-of-the-Art Object Detection in YOLOv12. Our object detection methods now use the new YOLOv12
weights, released in February 2025. The new weights provide a significant advantage over our previous
YOLOv8 model in inference speed, resource consumption, and accuracy. Our models will use weights from
custom dataset training (such as tires and potholes) alongside the Common Object dataset already prebuilt
into the software.

●​ Custom Wheel Control Stack. Our custom-made wheel layout and control structure enable highly precise
and responsive control of the robot, both during teleoperation and autonomous control. All software
responsible for managing wheel actuators is written and optimized by team rACTor, allowing us to
personalize our control scheme to our specific requirements.

5. Description Of Mechanical Design
The mechanical design of the rACTor is guided by a hardware philosophy focused on rapid prototyping,
symmetry, and simplicity. Our primary motivation for implementing four-wheel steering (4WS) was to explore a
new approach for the team and to unify the steering control strategies required for both AutoNav and Self-Drive
courses. While Self-Drive typically relies on Ackermann steering, this configuration would make navigating
around barrels on the AutoNav course difficult. Alternatively, a differential drive system would depend too
heavily on wheel slip during lane following in Self-Drive. By adopting 4WS, we achieve a balanced solution: it
maintains the benefits of Ackermann steering while Double-Ackermann (steering on both front and rear axles)
delivers full maneuverability for complex navigation tasks.
Using standardized, readily available commercial off-the-shelf (COTS) components significantly reduced costs
and development time. This approach allowed for rapid design iterations and early identification of component
clearance and structural design. SolidWorks (CAD) enabled designing a constrained frame geometry and 3D
printed mounting for most components. The design process was kept simple and iterative; starting from the
ground up, adding components only for functionality and ensuring they were well constrained.

4

Figure 4: Schoolbus Mechanical Design and Component Layout

Our main focus was the unique steering system and the power station as core components driving the frame
construction. The overall structure follows the "exact constraint design" principle, ensuring the robot is neither
over-constrained nor under-constrained. The frame design prioritizes structural integrity and symmetrical
design to simplify fabrication and balance weight distribution. Utilizing standardized fasteners (primarily ¼-20
and M6), ensures simple assembly and quick maintenance timelines.
Aluminum Extrusion Framework: Cut-to-order and repurposed aluminum extrusions form the backbone of the
robot's structure. Different profile sizes were selected based on their torsional rigidity, load capacity, availability,
and ease of assembly. This modular approach allowed for flexible mounting options and simplified the
integration of additional components as the design evolved. The T-slotted aluminum extrusion system provided
unprecedented tensile strength, vibration resistance, and load-bearing stability while enabling easy maintenance
and part replacement.
Material Combinations: The design incorporates a strategic mix of materials to optimize performance while
managing costs and lead times:

●​ Aluminum and steel for primary load-bearing structures
●​ Wood for static, non-critical structural elements
●​ 3D printed PETG for complex geometries and connector parts, leveraging PETG's high tensile strength

and resilience
Drive System: The rACTor utilizes a Segway Ninebot Max G30P Electric Scooter Hub Motor (500W BLDC). This
integrated wheel-motor combination provides powerful and smooth movement at lower speeds while
maintaining quiet operation on paved surfaces. The integrated tire design simplifies the overall mechanical
assembly while ensuring reliable traction.
Steering Mechanism: The symmetrical steering assembly features an aluminum square tube with 3D printed
inserts housing steel ball bearings. A smaller square aluminum extrusion acts as the shaft which slides into the
bearings using a 3D-printed collar. This design creates a robust yet smooth steering action, with loads
transferred from the shaft to the frame via steel bolts. The square profile prevents unwanted rotation while
allowing necessary vertical movement.
Suspension: Though the steering column design supports the addition of a suspension system, we opted not to
implement one given the competition scope and budget constraints. Instead, Noise, Vibration, and Harshness
(NVH) management for electronics is accomplished through soft mounts for vibration-sensitive components,

5

thread lockers and washers for fasteners to prevent loosening, and strategic component placement to minimize
the effects of vibration. This approach balances performance requirements with design simplicity while
maintaining the option to add suspension in future iterations if necessary.
Weatherproofing: The outdoor-rated hub motor features built-in weatherproofing, while non-waterproof
electronics are positioned higher in the frame to avoid water exposure. The frame design incorporates natural
drainage paths and protective covers for sensitive components. PETG's excellent chemical resistance and UV
light protection capabilities make it ideal for outdoor-exposed 3D-printed components. The external housing
geometry is designed to direct water away from sensitive components and connection points. All external
sensors feature waterproof housings or are installed with appropriate protective covers to ensure reliable
operation in various weather conditions.

6. Description Of Electrical And Power Design
The electrical and power design of the rACTor prioritizes reliability, flexibility, and safety. The system
architecture features a centralized power source with distributed power management for various subsystems.
The electronics design also incorporates COTS components where appropriate, complemented by custom
mounting solutions to meet specific performance requirements.

Power Source: The rACTor’s core is an Anker SOLIX F2000 Portable Power Station featuring a 2kWh LiFePO4
(Lithium Iron Phosphate) battery that supports all types of power needs at 2kW max draw; pure sine wave
120VAC via 4×NEMA 5-20 and 1×NEMA TT-30, 12VDC via a 2xSAE J563 auxiliary outlets, and 2xUSB-A and
3xUSB-C PD ports.

This power station was selected for its high energy density, extended cycle life, and enhanced safety
characteristics compared to traditional lithium-ion batteries. The LiFePO4 chemistry provides excellent thermal
stability, reducing fire risks during operation and charging. All the main electronic components work on AC
power allowing them to be run outside the robot while the power station fast charges 0 to 80% in just 1.4 hours.
Moreover, the capability of directly adding 1kW of Solar Panels opens up the possibility of setting up a charging
dock that enables 100% renewable energy powered deployment. Circuit protection is handled by the power
station as well as connected surge protectors for additional safety.

Distribution: The power station is connected to individual components via AC-DC, DC-DC converters and direct
AC plugins depending on the component’s power requirements. In terms of power, Schoolbus can be physically
separated into two parts; the driver suite (responsible for autonomous driving) senses and thinks while the robot
base (solely responsible for motion and power storage) acts. This unique feature allows independent
maintenance and development of each part. For example, by simply removing the top driver suite and plugging it
directly into a wall outlet, it allows members to work on software development and testing without requiring the
robot base to be connected.

Robot Base: A dedicated 350W BLDC motor controller (commonly found as ebike controllers) drives each hub
motor and a separate 250W brushed DC controller operates the steering motor for each corner. These
components are selected due to budget constraints and can be easily upgraded later on. For each corner, both of
these motor controllers are driven via an ESP32 based board (WT32-ETH01) connected over Ethernet. Keeping
all the analog signals to very short cable lengths allows individual corners to operate independently. This
strategy was chosen to kickstart the firmware development concurrently with frame design and other
component selection.

6

Driver Suite: A standalone set of sensors are directly connected to the Raspberry Pi 5 and a laptop with discrete
GPU via USB and ethernet switch. The following sensors are installed:

●​ Ouster OS1 LiDAR
○​ Provides full-surround 3D point cloud data with high resolution and range.

●​ RouteCAM_CU22_IP67 IP Camera
○​ PoE camera sensor that captures high resolution images with low latency.

●​ Yahboom CMP10A Inertial Measurement Unit (IMU)
○​ Tracks robot orientation and motion using gyroscopes (yaw), accelerometers (roll and pitch), and

a magnetometer.
●​ ArduSimple simpleRTK2B GNSS

○​ 2x Ublox ZED-F9P multiband receiver supplies a GPS fix with RTK accuracy.

ESTOP: Wireless estop using RC controller and receiver (Turnigy i6S TX and iA6B RX) is connected in series with
mechanical estop buttons which drive active-on relays directly connecting the motor controller brake line.
Breaking the loop anywhere applies instant braking force via the BLDC motor controllers.

7. Description of Software System
Schoolbus is built on the principle of modular programming, where software solutions are split into smaller
sections that function independently. Programming in modules allows multiple developers to work seamlessly
and in parallel. Modules can also be tested individually, enabling developers to complete and validate sections of
code with no deadlocks.

ROS2 supports the modular approach to software development by presenting a messaging scheme that nodes
can use to broadcast and retrieve information. Rather than having nodes communicate with each other directly,
they instead share and receive information over “topics”. This allows nodes to use data available on the ROS
network without having to rely on another node. ROS2 also allows for real-time messaging between nodes
running on different devices.

The entire software stack is split across three different devices, each responsible for a different layer of robot
controls and software intelligence. On the lowest layer, WT32-ETH01 microcontrollers control the actuators for
each wheel on the Schoolbus. On the sensor layer, a Raspberry Pi 5 receives data from the many sensors on
board and publishes them to the ROS network. The Raspberry Pi also manages robot movement schemes and
teleoperation. On the intelligence layer, a GPU laptop does advanced tasks like localization, navigation, object
detection, and user interaction.

Figure 5. Software and Communication Architecture.

7

7.1 Perception and Localization

The Schoolbus platform is equipped with an impressive sensor suite to support perception and localization tasks.
The suite includes a 360-degree LiDAR for high-resolution spatial mapping, a 2D camera for visual perception
and object detection, an inertial measurement unit (IMU) for estimating orientation and acceleration, and a GPS
module for global positioning. Together, these sensors enable the system to perceive its surroundings and
accurately localize itself within its environment.

7.2 Mapping and Navigation with Nav2

Nav2 is a successor of the ROS Navigation Stack. It was developed to allow robots and autonomous vehicles to
avoid obstacles and move through complex environments. Modern warehouse robots utilize Nav2 in order to
navigate around prefabricated floor plans, using this predetermined map, the bot is able to determine its
location. These robots use a predefined global map, which best approximates permanent walls in the
environment, and a local map, which dynamically uses the robot’s sensors to create a map. It then utilizes the
maps and odometry data to plot routes from its current location to a specified goal, as well as detect and avoid
obstacles that may appear in its path. Using LiDAR (Light Detection and Ranging) as well as SLAM (Simultaneous
Localization and Mapping), the robot can identify its current location by comparing the identified walls of its
local map with that of the global map. By sending sensor data, as well as the maps to the controller server, it can
create a costmap that can be sent to a planner server. This planner server then can instruct the robot on an
optimal path to its desired end point.

Figure 6: Nav2 Process Diagram
The robot used in this project will be placed in an unfamiliar environment, so the use of a predefined global map
is impossible. Therefore the robot must estimate its current position and dynamically create a global map
through the updates to its local map. Because the robot does not make use of a predefined map, it must rely
entirely on its odometry and sensor data. IMU data and GPS coordinates lay the foundation for basic odometry,
however, drift in the data aggregates into larger problems. In order to combat this problem, the use of LIO (Lidar
Inertial Odometry) is used to supplement the data. This system utilizes the point cloud from the LiDAR to
approximate its movement by computing the difference between its previous distance to known walls. This
allows the robot to maintain a much more stable and accurate odometry, eliminating the drift. This odometry
data is then used alongside the costmap to plan a route and send instructions to the robot and effectively
navigate around obstacles.

Alongside obstacles, lane lines are also plotted in the costmap. Since lane lines cannot be detected with LiDAR,
we use the camera to detect lane lines, and use the position of the camera to translate detected lines to the
costmap. Doing this, the route planner is able to plan a path that does not cross over a line. For lane changes and

8

other safety-related situations, the lane lines can be temporarily ignored until it is safe to continue following the
lane.

7.3 Teleoperation

Teleoperation is the process of remotely controlling a robotic system from a distance, typically with a human
operator. In this system, the operator sends movement commands over a wireless communication protocol, such
as the iBUS protocol. The control interface consists of a Turnigy Flysky transmitter, which provides eight
primary radio channels for motion control and an additional dedicated channel for remote emergency stop
(e-stop) - a critical safety requirement.

Although the robotic system is primarily autonomous, teleoperation is essential during transportation to and
from competition courses. Additionally, it plays a crucial role in evaluation and testing, where manual control
enables fine-tuning and troubleshooting. These operational requirements drive the need for a robust and reliable
teleoperation system.

In teleoperation, the user interfaces with the Turnigy FlySky transmitter, which provides four directional control
channels and four selectable switch channels. The transmitter communicates using iBUS, a digital, low-latency,
bidirectional protocol that efficiently transmits multiple control channels over a single wire at a fixed baud rate
of 115200, reducing system complexity. The system’s teleoperation receiver, a TGY-iA6B, is integrated into the
Raspberry Pi 5 hardware stack, where it receives the iBUS signal and relays the data to the robot’s ROS2 software
architecture. At this stage, the E-Stop signal is directly routed to an emergency stop relay, which immediately
cuts power to the robot for safety without the need of the microcontroller.

7.4 Drive-by-Wire Control

Both Nav2 and teleoperation produce a general scheme for how the robot should move as their output. This
control scheme needs to be translated into individual instructions for the four wheels. This is accomplished
through the Wheel Twist Transformer, which converts general movement messages into wheel instructions
using trigonometry. As previously mentioned, Schoolbus has two primary movement modes, labeled as “Double
Ackermann” mode and “Fixed Heading” mode.

Figure 7. Double Ackermann (Left) and Fixed Heading (Right) Steering Diagrams.

9

Double Ackermann

The “Double Ackermann” control mode follows the traditional Ackermann method of steering; however, all four
wheels participate in steering. In Double Ackermann mode, the road angle for each wheel is calculated with the
following algorithm:

1.​ Assume a Point P in the center of the robot.
2.​ Obtain a yaw value Y from a general control message.
3.​ Generate a Point P’ that is Y units away from Point P. Point P’ will be the center of the robot’s angular

path, with radius Y.
4.​ Rotate each wheel such that the road angle of the wheel is normal to a vector to Point P’.

Fixed Heading

The “Fixed Heading” control mode allows the robot to translate over the road surface without changing the
robot’s heading. In Fixed Heading mode, the road angle for each wheel is calculated with the following algorithm:

1.​ Obtain a road angle value θ from a general control message.
2.​ Rotate each wheel such that the road angle of the wheel is θ.

Wheel Operations

Each wheel is equipped with a WT32-ETH01 microcontroller, which is responsible for handling basic operations
local to the wheel. The wheel microcontroller is responsible for three major functions: speed control, Hall Effect
interpretation, and steering control. The microcontrollers use Hall Effect sensors inside the wheel to maintain
accurate speed control while managing the throttle and brake channels on the motor controller. The
microcontroller also reads from an encoder on the steering motor to maintain the proper wheel angle.

Communication with the wheels is done through MQTT, a publisher/subscriber messaging framework, like ROS;
but more lightweight. Even though it is lacking many of the features offered by ROS, MQTT is still valuable to
low-power devices, like Arduino, ESP32, and other microcontrollers like the boards used on the wheels.

Figure 8: WT32-ETH01 Process and IO Map

7.5 Object Detection and Classification
7.5.1 YOLO Models

Ultraltytics’s YOLO v12 is the latest model as of February 2025 and trades off higher accuracy in all tasks
for slower training times compared to previous models. We decided to utilize the v12’s medium model for

10

object detection, having a higher mAP (Mean Accuracy Precision, a measure of the number of
correct/accurate predictions) than v11 while only taking 3% more inference time during training.

7.5.2 Training & Classification

There are 4 classes (3 obstacles and 1 sign) that will trigger an event and change the movement of the bot.

●​ Obstacles - If any of these are seen, move around the obstacle(s) if space is available
○​ Potholes
○​ Tires
○​ Pedestrians

●​ Signs
○​ Stop signs - If this is seen, the robot must come to a stop at the white line

We created a dataset from photos taken directly from the camera mounted on Schoolbus and trained the
medium version of YOLO v12 on it. The following images are examples from testing on the tire obstacle dataset.

Figure 9: Images Batch of v12 Model Successfully Identifying When a Tire is Present

7.6 Scripted Route System

Our simplified route system enables us to use the Schoolbus platform with a Python API for the robot’s functions
and simple web interface to allow viewing ROS topics in real-time. It can also select and run Python scripts
designed for specific routes. The API simplifies the designing routes to the level of verbal directions given to a
driver in an unknown area. For example, a route can start with following the lane up to a GPS waypoint then turn
right at the stop sign to continue following the lane until the next waypoint. Nav2 handles obstacle avoidance
checks which run in parallel where the vehicle either stops if not enough room is available or changes the lane if
another path is found.

Using Python as the base language, our route scripts are compiled right before execution allowing for easy
debugging or alterations to routes on the fly. This is one of the biggest time-saving features of our software
stack. Cutting down on debugging time while testing in the field has had immediate benefits for the development
timeline.

8. Cyber Security Analysis

The NIST Risk Management Framework (RMF) is a 7-step methodology for assessing and managing information
security in data-intensive systems. These steps include preparing the organization, categorizing data by impact,
selecting and implementing security controls, assessing effectiveness, authorizing operation, and continuously
monitoring for risk. These steps are required for FISMA (Federal Information Security Modernization Act)

11

compliance and form the basis of the cybersecurity process we adopted for securing our autonomous vehicle
system.

As our platform transitioned to ROS2, which offers enhanced security features, we now benefit from support for
secure DDS (Data Distribution Service) communication, which includes built-in options for authentication,
encryption, and access control between nodes. This shift is critical for protecting inter-process communication
in distributed robotic systems.

We also utilize MQTT for lightweight message transport across the drive-train subsystem. To secure MQTT
communication, we implement the following measures:

●​ Client authentication using unique credentials.
●​ Broker-side IP whitelisting and blacklisting to control which devices can connect.
●​ Rate limiting and denial-of-service (DoS) protection to mitigate potential flooding attacks or misuse.

To further protect the system:

●​ WPA2 security is enabled on the local network, and MAC address whitelisting restricts device access.
●​ Wired connections are used for all critical control systems to mitigate the effects of 2.4 GHz and 5 GHz

jamming.
●​ Driver override is enforced by design: any manual input disengages autonomous control.
●​ Emergency stop (E-stop) logic defaults to engaged on communication loss or process failure.

These layers of defense work together to mitigate potential cyber-physical attacks and ensure the safe operation
of the vehicle. Table 3 outlines the most likely threats and our corresponding risk mitigations.

Attack Threat
Level

Risk Defense Response

Local Network
Breach

Medium ROS Access, Web GUI
Access

WPA2 Security,
MAC Address Whitelisting

Activate hardware E-Stop, MAC
Address Blacklisting

Source Code
Tampering/Removal

Low Unexpected Vehicle
Behavior

Secured Device, Controlled
Access

Recover code from version
controlled online repository

Remote Connection
to Main Computer

Medium Process Tampering,
File Tampering

Restricted SSH Access,
Password Protection

Recover code, SSH Blacklisting

Remote Connection
to E-Stop Monitor

Low E-Stop Process
Tampering

Restricted SSH Access,
Password Protection

E-Stop turns on when the
monitor is disabled or loses
power

Wireless Signal
Jamming

Low Wireless Network
Malfunction/Disable

Wired Connection for
Critical Devices

Remote E-Stop will activate,
Use exclusively wired
connections

Table 3: Cyber Security Threats and their Responses

9. Analysis of Complete Vehicle
9.1 Construction and Integration
Initial testing confirms that the frame design is both robust and sturdy, capable of withstanding rough driving
conditions. However, these tests also highlighted the need for a small suspension system when operating
off-road or on poorly maintained pavement. The symmetrical chassis design proved advantageous, reducing the
number of replacement parts required and simplifying both manufacturing and maintenance. Constructing the
robot as two main modules-the motion base and the driver suite-enabled parallel integration timelines and
minimized delays due to component sourcing. This approach allowed some team members to concentrate on

12

developing the 4WS robot base and its firmware, while others focused on validating individual components of the
driver suite.

A recurring challenge for the team has been the limited number of members with expertise in electrical and
mechanical design. To address this, we leveraged the power station’s AC power, and ethernet switches, which
significantly streamlined the integration of software and hardware. As a result, assembling the electronics for the
driver suite required only reference to product manuals, eliminating the need for specialized electrical or
hardware knowledge and enabling full system integration with minimal difficulty.

9.2 Robot Safety and Reliability
In order to provide adequate safety for the team members and other pedestrians, Schoolbus has a number of
safety features implemented. Whenever the robot is active, a safety light flashes, indicating that it is on and
possibly mobile. Schoolbus has a set firmware speed limit of 5 MPH, ensuring that the robot will not cause
significant damage in the event of a collision. Steering limits stop the robot from pulling out cables or wires by
ensuring that it only ever turns within its given range of freedom. Finally, the robot utilizes a physical E-Stop line
that prevents the robot from moving as soon as the E-Stop button is pressed, the wireless E-Stop is activated, or
connection is lost with critical devices. All of these features are meant to keep the people, and the robot, safe
from harm.

Even though Schoolbus hardware is built to be robust, we have come across hardware failures that are addressed
using the table below.

Failure Points Resolution

Camera is not found Unplug and plug the ethernet cable back in, restart the router and ping the assigned
IP

Laptop crashes Hold the power button for 10s to shut it off. Then make sure the charger is connected
and powered on. Turn it back on and re-launch the software

Ethernet connection Make sure the cable is pushed in. Listen for an audible click as the cable latches in.
Ping the IP of the device in question for further network troubleshooting

ESTOP Braking Failure Restart the motor controllers and the estop loop. Sequentially verify every estop
activation point in the loop (BRB, Wireless, relays, brake wire)

Raspberry Pi Malfunction Restart. If SSH does not work, remove the pi from the vehicle and diagnose it outside.
Worst case, re-flash using the backup image and validate it

Table 4: Hardware Failures and their Respective Resolutions

9.4 Robot Control
As detailed in Section 6.4, Schoolbus has two primary control modes, Double-Ackermann and Fixed Heading.
These modes are available and used in both autonomous and teleoperation modes. Nearly all of our autonomous
strategy uses Double-Ackermann, as Ackermann is a very common control scheme, and is natively supported by
Nav2. Fixed Heading mode is used in select circumstances where it would provide a significant advantage, such
as in parallel parking.

9.5 Software Development and Version Control
All software development done for rACTor is publicly available on our Github organization. We use the proven
principles of version control present in Git/Github to properly maintain software and enable collaborative
programming.

We also make disk backups of important devices like our Raspberry Pi, so that they can be restored in the event
of a major failure. Additionally, we make install scripts that set up developer devices for rACTor, so that new
devices and members can be easily onboarded.

13

9.6 Simulation Environment and Testing
The simulation environment used for the development of the robot is based on the Gazebo Simulator, an open
source simulator that allows developers to create and test robots in virtual environments. Used alongside ROS2
Jazzy, Gazebo provides a realistic simulation of a robot’s behavior, as well as simulated data from sensors. These
simulations allow the testing of software such as Nav2 and SLAM with realistic data, in various environments.

Gazebo has the ability to utilize various sensors through the use of a URDF file. The URDF file is used to define
the robot’s physical model, including the placement of the sensors. This makes the data received more closely
imitate that of a real robot, allowing for more effective simulation, and the fine tuning of algorithms. The
primary goal of testing was to ensure that Nav2 was capable of navigating complex environments, as well as to
optimize the sensor placement on the actual robot.

9.7 Physical Testing and Performance
The table below details the physical tests conducted on Schoolbus. This table is up-to-date as of May 15, 2025.

Physical Test Status

Controls Linear Movement Functional, Tested

Steering Functional, Tested

Brakes Installed for Front Wheels, Testing

Double-Ackermann Functional, Tested

Fixed Heading Functional, Tested

Remote Control Functional, Tested, <10ms response time

Sensors RouteCAM Camera Functional, Tested, Available in ROS Network

Ouster OS1 LiDAR Functional, Tested, Available in ROS Network

simpleRTK2B GNSS Functional, Tested, Available in ROS Network

Yahboom CMP10A IMU Functional, Tested, Available in ROS Network

Safety E-STOP BRBs Functional, Tested

Remote E-STOP Switch Functional, Tested

Speed Limit Functional, Firmware Limited to 2 m/s (4.47 mph)

Table 5: Physical Tests and their Statuses

10. Unique Software, Sensors, and Controls
The Schoolbus platform and most rACTor software is designed to be as modular and generalized as possible. As
such, most hardware and software is not specifically designed for IGVC. Competition specific content includes:

10.1 AutoNav
●​ Nav2. The navigation stack, including LiDAR Inertial Odometry, line detection, and route planning.
●​ Waypoint Navigation. GPS based navigation and route planning to a target location.

14

10.2 Self-Drive
●​ YOLO Object Detection. The tire, pedestrian, and stop sign detection models, and software for detecting

these objects within an image.
●​ Competition Scripts. The high-level scripted routes designed to complete specific IGVC-related tasks.

11. Initial Performance Assessments

How is Schoolbus performing to date?
Using our course at LTU, we can test functions required for the competition ahead of time. The tables below
detail the status of each test.

Self-Drive Tasks
Qualification Tests
Complete- Q.1: E-Stop Manual​
Complete- Q.2: E-Stop Wireless
Testing- Q.3: Lane Keeping (Go Straight)​
Complete- Q.4: Left Turn​
Complete- Q.2: Q.5: Right Turn

Machine Vision Tests
Complete- FI.1: White Line Detection
Complete- FI.2: Static Pedestrian Detection (Vision)
Complete- FI.3: Tire Detection

Traffic Sign Tests​
Incomplete- FII.1: Stop Sign Detection

Intersection Tests​
Incomplete- FIII.1: Lane Keeping
Incomplete- FIII.2: Left Turn
Incomplete- FIII.3: Right Turn

Parking Tests
Complete- FIV.1: Parking. Pull Out​
Complete- FIV.2: Parking. Pull In
Complete- FIV.3: Parking. Parallel​

VRU Tests​
Incomplete- FV.1: Unobstructed STATIC pedestrian detection​
Incomplete- FV.2: Obstructed DYNAMIC pedestrian detection
Incomplete- FV.3: STATIC pedestrian detection. Lane changing​
Incomplete- FV.4: Obstacle detection. Lane change

Curve Road Tests​
Incomplete- FVI.1: Lane Keeping​
Incomplete- FVI.2: Lane Changing

Other Tests​
Testing- FVII.1: Pothole Detection​
Incomplete- FVII.2: Merging

Main Course​
Incomplete- Simple Main

AutoNav Tasks
Qualification Tests
Complete- Robot Dimensions
Complete- E-Stop Manual​
Complete- E-Stop Wireless
Testing- Safety Light
Complete- Speed Control
Testing- Lane Following
Incomplete- Obstacle Avoidance
Incomplete- Waypoint Navigation

Course Tests
Testing- Autonomous Control
Complete- Ramps/Grades
Incomplete- Obstacle Routing
Complete- GPS Localization

Table 6: Status of IGVC Functions

15

	IGVC 2025 Design Report
	
	Team: rACTor
	Robot: Schoolbus
	
	2. Conduct Of Design Process, Team Identification And Team Organization
	2.1 Team Introduction and Organization
	2.2 Design Assumptions and Process

	3. System Architecture of our Vehicle
	4. Effective Innovations In Vehicle Design
	5. Description Of Mechanical Design
	6. Description Of Electrical And Power Design
	7. Description of Software System
	7.1 Perception and Localization
	7.2 Mapping and Navigation with Nav2
	7.3 Teleoperation
	7.4 Drive-by-Wire Control
	Double Ackermann
	Fixed Heading

	7.5 Object Detection and Classification
	7.6 Scripted Route System

	8. Cyber Security Analysis
	9. Analysis of Complete Vehicle
	9.1 Construction and Integration
	9.2 Robot Safety and Reliability
	9.4 Robot Control
	9.5 Software Development and Version Control
	9.6 Simulation Environment and Testing
	9.7 Physical Testing and Performance

	
	10. Unique Software, Sensors, and Controls
	10.1 AutoNav
	10.2 Self-Drive

	
	11. Initial Performance Assessments
	How is Schoolbus performing to date?

