
IGVC 2024 Self-Drive Design Report

Team: ACTor

Date: May 15, 2024

Team Captain Devson Butani dbutani@ltu.edu

Members Ryan Kaddis rkaddis@ltu.edu

Milan Jostes mjostes@ltu.edu

Vipul Prajapati vprajapat@ltu.edu

Assoc. Members Sean Kill skill@ltu.edu

Travis Bowman tbowman@ltu.edu

Aaron Wisneski awisneski@ltu.edu

Faculty Advisors Nicholas Paul npaul@ltu.edu

Justin Dombecki jdombecki@ltu.edu

Giuseppe “Joe” DeRose gderose@ltu.edu

ChanJin “CJ” Chung cchung@ltu.edu

Faculty Advisor Statement

I, CJ Chung, Nicholas Paul, Joe DeRose, and Justin Dombecki of the Department of Math and Computer Science at
Lawrence Technological University, certify that the design and development on the ACTor research platform by
the individuals on the design team is significant and is either for-credit or equivalent to what might be awarded
credit in a senior design course.

1

mailto:dbutani@ltu.edu
mailto:rkaddis@ltu.edu
mailto:mjostes@ltu.edu
mailto:vprajapat@ltu.edu
mailto:skill@ltu.edu
mailto:tbowman@ltu.edu
mailto:awisneski@ltu.edu
mailto:npaul@ltu.edu
mailto:jdombecki@ltu.edu
mailto:gderose@ltu.edu
mailto:cchung@ltu.edu

1. Conduct Of Design Process, Team Identification And Team Organization

Team Introduction and Organization

Team ACTor consists of undergrad students and graduate students. Associate team members worked on this
IGVC project in a regular lecture class, Deep Learning, as a term project in the class. After the team was officially
formed on January 9th, 2024, we have a team meeting every Tuesday evening to check the progress and discuss
issues and problems. Each member was delegated to specific tasks in the beginning based on prior experiences
and interest. Weekly team meetings also provide a way to collaborate in creating new ideas and divide up
detailed sub tasks for the upcoming week. In-person interaction is an efficient and effective method for sharing
information within a team. Roughly, each team member puts in about 5 hours a week for coding, testing,
documenting, maintaining, code reviews, and meetings. See Table 1.

Name Degree Program Primary Responsibilities Hours
Devson Butani M.S. Computer

Science
Team lead, redesigning software architecture, updating car and
sensor hardware, maintaining source code, and analyzing new
feature viability

400

Ryan Kaddis B.S. Computer
Science

Simulator development; Turns, Tire & pothole detection and
avoidance

250

Milan Jostes B.S. Computer
Science

Unit Testing, Performance Assessment, Lane Detection, Lane
Centering & Keeping

200

Vipul Prajapati M.S. Computer Sci. eStop, Turns, & Parking 140

Sean Kill M.S. Computer
Science

Associate team member; Collecting data, annotation, training
models

100

Travis
Bowman

B.S. Robotics Eng &
B.S. Computer Sci.

Associate team member; Collecting data, annotation, training
models

90

Aaron
Wisneski

B.S. Computer
Science

Associate team member; Collecting data, annotation, training
models

42

Table 1: Teammembers and roles

Design Assumptions and design process

Instead of using traditional waterfall process models, our development philosophy is based on the idea of agile
development. We try to meet IGVC requirements through early, continuous, frequent, and incremental testing of
the working system of which the critical component is the software. We fully understand the project progress is
measured by working software. Simplicity is essential too - we are always targeting to test the most important
functions while avoiding tasks that do not contribute significantly to the end goal of the planned delivery/testing.
However, a serious problem is the Michigan weather. It is too cold to test the vehicle system physically outside till
full spring since our vehicle does not have a heater. Additionally, we cannot test the vehicle at night because it is
too dark outside. Considering those problems, we set our development strategies as the following:

1. We actively use simulators to develop initial code
2. Test the initial code using the vehicle indoors as much as possible until the midterm evaluation period at

the end of February
3. After the spring break and when summer time begins on March 10th (it is not dark around 7pm after

summertime), we use our small outdoor course on campus to continue to develop and test our system
4. We try to have as much experience as possible by developing the system in different environments so as

to be fully experienced to different environments for the unknown real IGVC self-drive competition 2024
course

2

Figure 1 below shows our team member onboarding strategy and validation timeline using multiple test
environments.

Figure 1: Teammember onboarding strategy and validation timeline using multiple test environments

2. System architecture of our vehicle
ACTor (Autonomous Campus Transport) is an autonomous vehicle research platform built on a Polaris GEM e2
base jointly sponsored by MOBIS, DENSO, Veoneer, Realtime Technologies, Dataspeed, and SoarTech. The
vehicle is equipped with Dataspeed drive-by-wire system, two vision sensors, one 3D Lidar. two 2D Lidars, and a
RTK GNSS; all connected via ethernet and USB to a primary laptop with discrete GPU and a Raspberry PI 3. Major
hardware changes from 2023 IGVC [1] include addition of a wide angle WDR (Wide Dynamic Range) camera,
updated LED display controller, and active emergency braking. Figure 2 shows a high level component interface
diagram.

For safety, ACTor’s emergency
stop system monitors multiple
layers of hardware and
software checks, and allows
activation via physical BRBs
(Big Red Buttons), radio switch
(2.5GHz) or using the web UI
over the local WiFi network
(2.5/5GHz) which uses our new
Python-based self-drive
software architecture.

Figure 2: High Level Component Interface

3

Figure 3: High Level Software Architecture

For this year’s IGVC self-drive challenge, our
software architecture has been completely
re-designed (see Figure 3) compared to the 2023
version. Instead of using pre-compiled Lua
scripting language that needs to be re-loaded
every time a change is made, we now leverage
Python’s interpreted nature as well as
multiprocessing capabilities to specify the top level
vehicle behaviors for route generation.

Our lower level utility software has been re-written
in Python to enable updated vehicle control
strategies, modularize packaging to streamline
CI/CD, and efficiently onboard new team members
at different academic levels.

ACTor now uses a new Web UI accessible over the
local network; developed using Nice GUI and
Python to enable simplicity and offer real-time
configuration.

3. Effective Innovations In Actor Design
● Moved from using pre-compiled behaviors to Just-In-Time compiled interpreted behaviors for route

generation. Seeing how last year’s software needed extra steps between making route changes to actually
executing them on the test course and the use of LUA scripting (a separate language/syntax that members
needed to learn), we chose to redesign the system using Python and effectively remove the entire process.
Now, members can simply make alterations to the code and hit run on the web UI after reloading the
script.

● Vehicle control strategy is now directly using closed-loop road angle (angle that the wheels point to)
instead of the conventional variable ‘yaw rate’ for steering for geometric reproduction and repeatability of
vehicle path in different vehicles and environmental conditions. One of the reasons is that this breaks
down the function's core interpretation and in the future, this will simplify training neural networks that
could work on simulated vehicles (especially in CARLA) or even vehicles of different makes or models.

● New Web UI brings open customization, real-time vehicle status and enables the interpreted nature of
Python to play routes for a simplified field (or simulation) testing experience. The UI is flexible on what gets
displayed and users can select their data of interest to view remotely in the vicinity of the vehicle's local
network. This was more of a necessity than anything else as the car only seats two, removing other
members from contributing their informed perspectives while on the test course.

● Our new YOLOV8 model for object detection uses a unified approach and OCR (Optical Character
Recognition) for reduction of sign detection false positives. Halfway through the training process, we
realized that all these separate neural networks were being run to detect separate objects of interest from
the same camera feed. By combining all of the training datasets, we developed a unified model to improve
the efficiency of our detection and classification. The unified model allows for a simpler approach that is
more VRAM and power efficient than the previous methodologies without sacrificing detection accuracy.

● We added hardware based E-Stop to direct hardware braking. The braking aspect was moved directly to
the brake actuator via the DBW firmware. This was inspired by the fact that the previous strategy was to
send a 0 speed goal for any emergency situations. Even though it worked every time, we needed the ability
to tune the amount of braking. Moving this functionality to the DBW gives more safety than before
because it will trigger E-stop if something goes wrong at a hardware level. It now applies constant brake
pressure as saved in embedded memory in the firmware. For example if the main laptop or RPi crashes, or
a wire becomes disconnected, the E-Stop automatically gets activated without the need for any software.

4

4. Description Of Mechanical Design
ACTor platform uses a drive by wire system developed and installed by Dataspeed Inc; to enable maximum
safety as well as complete vehicle control at all times. With this, our self-drive hardware and software stack acts
as an overlay to the vehicle giving absolute override to the driver when needed.

Our hardware philosophy is in line with modularity and cross compatibility, meaning our software can be used
on any vehicle as long as the required hardware is present and configured; as evident in our second ACTor
vehicle already being used for computer vision and deep learning research at LTU. Even though both vehicles
use different hardware configurations, our component mounting strategy and accessible electronics bay allow
researchers to plug-in their own hardware with ease.

Since this vehicle’s primary use is research, safety and ease of use are higher priority than aesthetics. Hence, the
entire dashboard has been replaced with a hinged mounting board allowing for easy access to all
non-permanent electronics and connections such as Ethernet, USB or low voltage power cables. This allows for
fast reconfiguration of sensors or painless debugging; the working area remains within easy reach and offers
complete visibility of each and every component.

As seen in Figure 4, ACTor is
pre-equipped with self-drive enabling
sensors; all of the external mounted
sensors (roof rack, front/rear
bumper, etc.) are rated IP67 or
similar. The Polaris Gem e2 base
being used has weather-sealed doors
and windows installed as options
from the factory. These sensors are
connected to the in-vehicle
components through either a
weather-resistant conduit running
through the passenger door frame or
from under body panels. This allows
for fast and easy access to individual
cables as well as keeps them tucked
away for safety and a robust
connection.

Figure 4: ACTor hardware suite

Figure 5: Extrusion based Roof Rack Figure 6: LiDAR and Camera Mount

As shown in Figures 5 and 6, ACTor relies on T-slot aluminum extrusions and 3D printing for most of the
mounting needs. For our targeted research use cases, minimizing ideation to implementation time is very
important. By using a simple extrusion roof rack, we have fastened the prototyping process of different LiDAR
mounts as well as testing various vision sensors. The roof rack allows changing sensors and quickly prototyping
their respective mounts. One of the latest updates include an adjustable LiDAR and camera mount that reduces
error in relational data transforms used for perception of the environment. Table 2 shows the cost of the ACTor
project for IGVC2024.

5

Item Specifications Price
Polaris GEM e2 vehicle with various options such as doors and trunk $15,000.00

New Polaris GEM ADAS Systems (Drive-By-Wire systems by Dataspeed) including installation fee $35,000.00

Velodyne VLP-16 “PUCK” 3D LiDAR, 16 beams $7,999.00

Hokuyo UTM-30LX 2D LiDAR $6,500

Hokuyo URG-04LX-UG01 LiDAR $975

Swift GPS, Piksi Multi GNSS $1,644.56

Swift GPS, Additional rover module and antenna to get GPS heading info $896.00

Mako G-319 PoE Camera with 6mm vari-focal lens $1,031.00

E-Con Systems RouteCAM CU22 IP67 - Outdoor Lowlight GigE HDR Camera $379.00

MSI Gaming Laptop, Intel 8-Core i7-11800H, 16GB RAM, 512GB SSD, GeForce RTX 3050 Ti 4GB $1,258.99

Miscellaneous items including lenses & filters, e-stop switches, wireless e-stop, LED strobe lights, cabin camera, RPIs,
inverters, switches, router, mounting rack, and LED panel, USB HDR cam, etc. $3,000.00

Total $73,683.55
Table 2: Cost of ACTor vehicle and hardware

5. Description Of Electrical And Power Design

Figure 7: Electronics suite - with their interfaces and system layout

The factory-installed batteries take 6-8 hours to charge fully and provide 20 miles of range (while using all
autonomous electronics). The DataSpeed Power Distribution System protects components from overload and
offers control of all the circuits via a touchscreen interface or the CAN bus. Some of the power efficiency losses
come from the 1kW inverter (92% eff.) and DC to DC converters (92-96% eff.) adding upto 800W that supply a
range of voltages to individual components. Using separate converters allows adequate power as well as fusing.
Figure 7 shows ACTor’s electronics suite. Figure 8 describes the power distribution strategy.

6

Figure 8: Power Distribution Strategy

The vehicle's components are controlled by a laptop (Intel 8-Core i7-11800H, 16GB RAM, 512GB SSD, GeForce
RTX 3050 Ti 4GB VRAM) that runs Ubuntu 20.04. This laptop also runs our route scripting tools and performs
object detection and sensor fusion using the camera and LiDAR. These sensors enable high-accuracy real-time
detection and 3D positioning of pedestrians and obstacles. The laptop's discrete GPU allows us to use
deep-learning models such as our alternative lane-following system and Yolo v8 based detection algorithms. We
also use Raspberry Pi 3B+ for hardware e-stop, remote e-stop, safety monitoring and status lights, and an LED
panel to display status information outside the vehicle.

The Polaris Gem e2’s motor controller limits top speed to 35 mph
and is able to provide a range of 20 miles. However, while under
autonomous mode we enforce lower speed limits using the
Dataspeed Inc ADAS Development Vehicle Kit. This drive-by-wire
(DBW) kit allows the vehicle to be driven using native controls
(driver operation) or electrically actuated hardware via ROS.

Their firmware modulates the accelerator/brake pedals, steering
wheel and gear selection hardware to achieve the desired linear
and angular velocity targets for the vehicle. Moreover, direct
steering angle targets can be provided to control maneuvers. We
use the default firmware parameters, a velocity dependent linear
acceleration limit of 0.9 - 1.2 m/s2, and a constant deceleration
target of 1.5 m/s2. Figure 9 shows the linear velocity response with
the default acceleration limits for the 1.5 mph speed limit test.

Figure 9: DBW control responsiveness

Our vision system consists of an Arducam IMX291 camera mounted under the 3D LiDAR on the roof. It captures
1080p images using 2.9um pixels with Sony Starvis sensor technology and a 120 degrees field of view. This allows
us to capture the lanes and clearly detect road signs up to 30 feet away. The 72dB of Dynamic Range enables
preserving color accuracy and sharpness in varying lighting conditions.
A Velodyne VLP-16 "Puck" LIDAR [4] donated by Veoneer provides 360 x 15 degrees of field of view with a radius
of 100 meters. It outputs 300,000 points per second across its 16 channels. We also use Hokuyo URG-04LX-UG01
[5], a small two-dimensional lidar with 4 meters of range, mounted on the front and the back. It helps us detect
immediate obstacles of significant size like tires, cones and curbs. These 3 lidars also assist us during parking
operations.
To navigate, the vehicle uses two Piksi Multi Modules [6], which are RTK GNSS receivers that can access multiple
bands and constellations. These modules provide position and heading data with centimeter-level accuracy and
high update rates. This is ideal for a moving vehicle that needs to cover large distances in a short time.
We use Ethernet connections for most of the components to ensure reliability and ease of debugging in a noisy
electrical environment.This networked architecture also allows remote access for testing and monitoring
purposes. The only components that do not use Ethernet are the 2D lidars, the cabin webcam, and the USB CAN
interface to the DBW system. The vehicle will automatically activate an emergency stop if it detects any failure in
the DBW connection.
The emergency stop system consists of two parts. The first part is a loop circuit that connects all the E-stop
buttons to a Raspberry Pi. Any button push will cause the circuit to break, allowing Dataspeed DBW hardware to

7

safely stop the car via direct braking with the aid of a relay attached to the Raspberry Pi. The second part is a
heartbeat mechanism that requires constant communication between the main computer and the Pi to enable
any interaction with the DBW. Additionally, the Pi controls warning lights on top of the vehicle that flash when
the vehicle is in autonomous mode. This dual safety system ensures that all critical components are functioning
properly before allowing autonomous driving.

6. Description of software system
Since the primary function of ACTor is to enable research and development in self-driving, our software
architecture requires easy onboarding for new students, and a seamless integration of new ideas. Using the
distributed and modular software design principles of the Robot Operating System (ROS), our software design
enables quick development cycles by allowing its inputs and outputs to be interchangeable. With these
specifications in mind, our software stack is designed to be quickly tested and allows for smooth implementation
with ever-changing hardware and software components.

Figure 10: Description of Software System

Our system architecture (Shown in Figure 10) is distributed across various packages that use ROS as the
middleware to communicate with our self-drive software stack; packages include sensor drivers, I/O processing,
perception modules, core control, status updates, and web user interface.

Perception and Localization

Our hardware interfacing sensor packages contain publisher nodes and configuration files for each sensor (e.g.
GPS, LiDAR, camera) that take in raw values from sensors and convert them to ROS messages, creating higher
level input abstractions for the vehicle navigation system. This enables fast and easy integration of new sensor
hardware or software as the ROS message types and topics are standardized for each sensor type. For example,
the 2D and 3D LiDARs use three separate nodes to gather raw data. The long-range 3D surround LiDAR
(Velodyne Puck mounted on the roof) outputs a standardized PointCloud message with its frame of reference
relative to the vehicle’s baselink. Front and rear short-range 2D LiDARs (Hokuyo URGs mounted on the bumpers)
used for close range avoidance and parking outputs a standardized LaserScan message also with its own frame
of reference relative to the vehicle’s baselink. Using these reference frames allows the self-drive software stack
to fuse the LiDAR data together when required for tasks that need long and short range clearance data.

Similarly, using a two-antenna Piksi Multi GNSS configuration, ACTor is capable of high precision position and
heading accuracy using SBAS. With an optional base station (used outside of IGVC), a RTK fix can be achieved for
centimeter level accuracy as well as EKF heading corrections. Our ROS nodes use positional coordinates (lat/long
in ECEF format), inertial measurement units (IMU) and heading info (NED - north east down). This GPS data is
then used to calculate the distance and angle from static waypoints. For example, during the merging behavior,
the route includes a set of waypoints departing from the current lane to the directed lane; the calculated target
steering angle from the waypoint node takes over priority control for a moment to depart the vehicle from one
lane to another and then lane centering takes over priority again.

8

Obstacle Detection with 2D & 3D LiDAR
The obstacle avoidance ROS package uses input from the VLP-16. Using built
in functionality, ground and obstacle PointClouds are generated from the
VLP-16’s input. For close proximity detections, the Hokuyo 2D LiDARs pitch in
with their laser scans. The current implementation of the obstacle avoidance
algorithm checks arbitrarily predefined regions around the car as shown in
Figure 11. These regions not only report if any object is present but also
calculate their closest distance from the vehicle, altogether this helps the
behavior executor to determine the action to be taken. For example, if an
obstacle is within an emergency region, the vehicle will halt. If it is far ahead
in the road, it may execute an avoidance maneuver or halt depending on the
route and outputs from other obstacle classification nodes. Figure 11: Regions of Interest

Object Detection and Classification
The previous year’s implementation for object detection and
classification used separate YOLOv8 models for tire, pedestrian,
and sign detection, as well as traditional computer vision
techniques for pothole detection. The separate models used
approximately 4GB of VRAM, which we wanted to reduce. We
thought that creating one model to detect all of our object classes
would be the best way to do this. This was possible because null
images for each of the classes were the same, so the classes were
compatible for training a single model to detect all of them.
We developed a unified model that was trained on the previous
datasets for tires and signs, along with newly created datasets for
the simulated potholes and pedestrians. The new dataset totals
around 10,000 images, with 4543 stop signs, 2313 pedestrians,
1323 potholes, 1867 tires, and 975 null images. After using data
augmentation the number of images increases to 20,589 images.
The unified model performed better than the previous
implementation of individual models for each class.
We load the model into memory when object detection is called
via a published message, the number of detections for each class
is published. The biggest bounding boxes for each of the
corresponding classes are published and used to determine the
distance from an object.
Optical Character Recognition (OCR) is also implemented with
EasyOCR to reduce false positives in stop sign detection. Vest
detection is achieved using a simple orange mask when a
pedestrian is detected. The unified model in combination with
OCR uses approximately 1.6GB of VRAM compared to the
approximately 4GB of VRAM the previous individual model
implementation used.
When the camera detects the tire or simulated pothole with a high
confidence level (see Figure 12) and is within a close range from
the vehicle, the lane changing program will be triggered. Lane
changing uses dead reckoning to turn for a certain amount of time
and reactivates the lane following algorithm afterwards. Figure 12: YOLOv8 Object Detection

Lane Following
Lane following involves two primary tasks: lane detection and maintaining a position in the center of the lane.
There were three different algorithms developed, however the ‘blob’ algorithm was chosen for the final process.
Figure 13 illustrates the steps involved in the lane detection algorithm.

9

Figure 13: Lane detection filtering process

The process begins with the application of OpenCV functions, such as Canny edge detection, blurring, and
dilation, to transform the initial image and accentuate its edges. Subsequently, a Hough transform is then
applied to these edges to identify lines. The detected lines are filtered, where only those at approximately 45
degrees to the vertical are retained. These lines are then extended to create the final lane mask called the
'blob' lane mask. For lane centering, this mask is used to generate dynamic forces or springs that help guide
the vehicle toward the lane's center. In Figure 14, a series of probes extend from the vehicle’s front center
(marked as a blue dot) to detect the Hough lines, and form springs at these intersection points. The force
exerted by each spring, which varies with its length, contributes to positioning the vehicle within the lane.

Blob Lane Detection

Figure 14: Springs form where rays
from the vehicle intersect with a
Hough line.

Figure 15: Springs with the shorter lengths
push the vehicle’s center toward the lane’s
center, while springs with longer lengths pull.

Figure 16: Lane centering reduces the
distance between the front center of the
vehicle and the center of the lane.

The lane centering algorithm aims to minimize the distance between the vehicle's front center (Blue Dot) and
the lane's center (Dotted Line). The springs work to equalize this distance through the application of forces,
which serve to reposition the vehicle's center towards the midpoint of the lane. The horizontal force
components from these springs serve as steering inputs for the vehicle. Figures 15 and 16 contextualize these
mechanics with respect to the vehicle positioned within a lane and within the 'blob' node, respectively.

Mapping and Navigation
Our current approach to self driving is to stay as close to human behavior as possible. We’ve also shifted from a
common ROS approach of using rates of directional velocities (linear/yaw) to using direct steering and pedal
values to control the vehicle. This strategy allows us to operate the vehicle in any environment (outside of IGVC)
with efficient compute power as well as streamline data collection (from real vehicles or CARLA simulator) for
future AI based self-driving research. For navigation, we are strictly using real-time local scene data (3D point
clouds and wide angle images) to handle features such as lane centering, obstacle avoidance and other
detections. Global scene information (GPS coordinates or map) is only used for getting a general direction to
make a route to follow and trigger steps in the route; for example, turn right at the intersection once passed
these coordinates. In the event lane lines are not available, we can momentarily fallback to using GPS
coordinates and head in the direction of the next waypoint. The accuracy of GPS-only navigation is environment
dependent (weather, tall buildings, bridges, etc…) hence not reliable on its own; we rely on real-time vision and
point cloud data for local control while the GNSS provides corrections and/or rough directions toward the next
waypoint. As soon as lane centering is confident on its detection again, the priority is switched back. This is all
described by Figure 17.
One of our research projects include DeepSteer, a convolutional and recurrent neural network based driving

10

approach on roads without lane markings. [11] This method was developed using our second ACTor vehicle and
can be effectively enabled in our self-drive software stack; however, it is not required particularly for IGVC use
cases. Traditional scene mapping techniques to generate self-drive operational design domains are avoided to
maintain simplicity, compute and data efficiency, and pave the way for future development of end-to-end neural
network based self-driving.

This will eventually help
lead our self-drive
software stack towards
being able to drive in
any environment using
any vehicle as long as it
is configured to our
specifications.

Figure 17: Navigation Design

Our simplified route system can be easily visualized as a switchboard operator following a set of directions,
controlling inputs from various environment perceptions to output certain vehicle behaviors. The behaviors are
made to directly influence vehicle controls; for example, lane centering directly adjusts the steering wheel angle
while the front LiDAR checks for obstacles and adjusts the speed accordingly. Behaviors like stopping at the
intersection are simple priority overrides, from the LiDAR checks to stopping at the sign, that control the speed
and stop for the allotted time. Similarly, the perception packages (detection and avoidance) can override both
steering and speed control if needed for behaviors like stopping for a pedestrian or navigating around a tire.
These overrides can either trigger the next step in the planned route (like turning right after stopping at the
intersection) or continue their current waypoint trajectory once they are resolved (like stopping for a pedestrian).

Using Python as the base language, our route inputs are compiled right before execution allowing for easy
debugging or making changes to routes on the fly, and continue running without needing to wait. This is one of
the biggest time-saving changes we have spearheaded this year. Cutting down on debugging time while testing in
the field has immediate benefits of fastening the development timeline. This combined with our new Web UI is
used to select routes, view real-time vehicle controls, debugging information from any ROS topics, and also
provide an emergency stop button.

Figure 18: Web interface

The UI (Shown in Figure 18) is designed using NiceGUI, a python library that enables beginner friendly web
development; allows any team member to learn and make changes in a short amount of time. Moreover, unlike
Angular, Express.js and other commonly used web frameworks, having the entire project in a single Python file
allows for easy CI/CD, version control and debugging.

11

Parking

IGVC involves three specific parking tasks: Pull In, Pull Out, and Parallel Park. The Pull In task requires the ACTor
to drive straight down a lane and then smoothly turn into a parking spot from the furthest lane. This is
accomplished using distance commands based on GPS heading info. The Pull Out involves the ACTor pulling out
of the aforementioned parking spot, turning onto the given outside avenue, and should stop close to a barrel.
The movement is achieved using distance commands, but barrel detection is achieved using a 2D LIDAR. The
Parallel Parking task requires that the ACTor successfully parallel park without crossing certain boundaries,
which represent real-life barriers and objects. This is accomplished using distance commands as well.

Status Display via LED Panel System

As an additional option, we’ve also developed an outward facing LED
Panel System (Figure 19) to display real-time vehicle status information
specifically for individuals on the test course. Since the vehicle only seats
two, other team members or spectators are often left out on the status
reports while the self-drive mode is active. The LED Panel System also
helps people outside contribute their perspective to debug errors or
correct vehicle behaviors (not immediately apparent to the passengers) at
a single glance without needing any connected devices or cellular based
telemetry services.

A QuinLED-Dig-Quad (ESP32 based Ethernet LED Controller) enables
web-based LED control using the WLED firmware API; also allows scaling
panels to any size using flexible WS2812B LED Matrices. These panels
directly interface with one of our ROS packages
(github.com/Aeolus96/wled_bridge) to display scrolling text or images.

Figure 19: LED Panel in the front

7. Cyber Security Analysis
The NIST Risk Management Framework (RMF) is a 7-step assessment of information security for data-intensive
systems and organizations. The RMF consists of preparing an organization for security management,
categorizing information based on impact, selecting the appropriate controls to protect the system,
implementing said controls, assessing whether the controls are in place, authorizing the system to operate, and
monitoring the controls for risk analysis. [12] These 7 steps are designed to support cybersecurity and
information security programs, and are necessary to meet requirements for the Federal Information Security
Modernization Act (FISMA). As we have implemented new security controls for our vehicle system, we have
followed a similar process to that of the NIST RMF. Table 3 shows the most likely attacks, and responses to cyber
security threats.

Local Network access is very important and if breached, the bad actor can interact with ACTor vehicle’s software
and running processes. To prevent this, we use WPA2 security managed by the Wi-Fi router and whitelist MAC
addresses of known devices. This combination of LAN defense strategies protects against unknown devices over
both wired and wireless connections.

2.4GHz and 5GHz signal jammers can be used to disable our wireless emergency stop as well as our web UI
connected to external monitoring devices. For this reason, our entire self-drive hardware stack relies on wired
connections to prevent malfunctions in critical vehicle operations. In case, a remote attack does take over control
of the vehicle in autonomous mode, once the driver nudges the wheel or pedals, the firmware automatically
disengages the DBW. Moreover, we use an active emergency stop system where it is required for a driver to
enable self-drive mode physically from inside the vehicle.

Attack Threat
Level

Risk Defense Response

Local Network BreachMedium ROS Access, Web
GUI Access

WPA2 Security,
MAC Address Whitelisting

Driver takes control of vehicle,
MAC Address Blacklisting

Source Code
Tampering/Removal

Low Unexpected Vehicle
Behavior

Secured Device, Controlled
Access

Recover code from version
controlled online repository

12

Remote Connection
to Main Computer

Medium Process Tampering,
File Tampering

Restricted SSH Access,
Password Protection

Recover code, SSH Blacklisting

Remote Connection
to E-Stop Monitor

Low E-Stop Process
Tampering

Restricted SSH Access,
Password Protection

E-Stop turns on when the
monitor is disabled or loses
power

Wireless Signal
Jamming

Low Wireless Network
Malfunction/Disable

Wired Connection for Critical
Devices

Remote E-Stop may not work,
Use exclusively wired
connections

Table 3: Cyber Security Threats and their responses

8. Analysis of Complete Vehicle
During the design, maintenance and new hardware integration phase, we learned a few interesting things. In
previous years, the team was chasing camera hardware with higher frame rates and a global shutter image
sensor. This combination does make a lot of sense mathematically however, the color quality and contrast
between pavement cracks and the painted lane markings was not constant. Cloud cover as well as time of day
drastically affected the performance of lane centering. Using this as inspiration, we chose to try out multiple
cameras with technologies like low latency (instead of high frame rate) and high gain HDR (instead of global
shutter). One of the successes was the Sony Starvis line of image sensors. The image quality is now superb even
in low light conditions where just the headlights of the vehicle are enough to differentiate between the road and
the lane markings. Moreover, changing daylight does not affect the lane centering algorithm because the color
accuracy and contrast has improved.

Handling hardware failures
Even though our ACTor hardware is built to be robust and survive multiple researchers poking around, we do
come across hardware failures that may completely disable the vehicles functionality. Table 4 shows these core
functionality breaking failures and how to mitigate them if they occur at competition.

Failure Points Resolution

Camera is not found Unplug and plug it back in, restart the laptop. Make sure the laptop charger is
connected and the AC inverter is powered on

Laptop crashes Hold the power button for 10s to shut it off. Then make sure the charger is connected
and powered on. Turn it back on and re-launch the software

Ethernet connection Make sure the cable is pushed in. Listen for an audible click as the cable latches in.
Ping the IP of the device in question

Software Braking Failure Restart the DBW and manually activate the E-Stop to check. If it does not work, check
if the relay clicks when activated or DBW receives the brake instructions

Raspberry Pi Malfunction If SSH does not work, remove the pi from the vehicle and diagnose it outside. Worst
case, re-flash the SD card using the backup image and validate it again

Table 4: Hardware failures and how to fix them

Software Testing and Version Control
We exclusively use GitHub to keep various branches and commits to our code base. One of the benefits of using
modular ROS packages is that each one can be handled by one or two team members enabling fast development
outcomes and distributed workload. For tracking changes, we refer to the commit history as well as maintain
highly commented code. This allows us to quickly identify why the code does what it does as well using git blame
can allow us to directly reach out to the person responsible for that exact line of code. Since our rigorous testing
strategy involves simulators as well as real vehicles, small bugs are ironed out instantly and large bugs like
vehicle specific configurations can be handled in the field. Our web UI allows real-time access for all team
members to monitor the vehicle while it is going around the course; enabling them to validate the functionality
they worked on in conjunction with other packages.
After the weekly function testing is concluded, we backup the entire code base, identify the changes required,
iron out smaller things like formatting and code comments, and send out a pull request. That is then reviewed by
other team members and finally merged into the main branch. We also utilize the latest formatting, type
checking and error identifying extensions in VS Code to increase productivity.

13

System-In-Loop Testing using Simulators

The team completed multiple simulation
investigations using SimpleSim, a LTU
developed ROS simulation package that
supports kinematic models of Ackermann
steer or differential steer robots, a pinhole
camera model, an ideal LiDAR model, and
GPS tracking model. The ground plane is
supplied to the simulation environment as
an image, and obstructions may be added
to simulate approximated LiDAR objects.

Figure 20: SIL Testing Overview

Obstructions were added to the simulation environment to represent barrels, pedestrians, and stop signs.
Multiple software algorithms were tested by simulating the vehicle behavior on the LTU Lot H campus course
model, see Figure 20. This was done to minimize the physical testing required to validate the system
performance. The virtual environment was designed for seamless integration with the web interface used on the
real vehicle. Configuration files were built for variations of the Lot H test course which reflect the IGVC
qualifications and functions test requirements.

The software architecture is designed to be modular (refer to
the Software Systems section), enabling individual or
combined testing of functions. These nodes are subject to
thorough integration testing both during development and
in-field conditions. Additionally, the vehicle undergoes
rigorous testing for each node. This process was conducted
on the Parking Lot H Test Course (Figure 21) on the LTU
Campus. The vehicle had a mechanical malfunction with its
DBW system, after which all nodes were thoroughly tested to
ensure their functionality.

Figure 21: Test course at LTU

9. Initial Performance Assessments

How is ACTor performing to date?
The team is able to test many of the IGVC functions on our test course at LTU. Table 5 shows the status of each
qualification, machine vision, traffic sign, intersection, parking, VRU, curved road and other tests.
Qualification Tests
Testing - Q.1: E-Stop Manual
Testing - Q.2: E-Stop Wireless
Complete - Q.3: Lane Keeping (Go Straight)
Complete - Q.4: Left Turn
Complete- Q.2: Q.5: Right Turn

Machine Vision Tests
Complete - FI.1: White Line Detection
Complete - FI.2: Static Pedestrian Detection (Vision)
Complete - FI.3: Tire Detection

Traffic Sign Tests
Complete- FII.1: Stop Sign Detection

Intersection Tests
Complete - FIII.1: Lane Keeping
Complete - FIII.2: Left Turn
Complete - FIII.3: Right Turn

Parking Tests
Testing - FIV.1: Parking. Pull Out
Testing - FIV.2: Parking. Pull In
Testing - FIV.3: Parking. Parallel

VRU Tests
Complete- FV.1: Unobstructed STATIC pedestrian detection
Testing- FV.2: Obstructed DYNAMIC pedestrian detection
Complete- FV.3: STATIC pedestrian detection. Lane changing
Complete - FV.4: Obstacle detection. Lane change

Curve Road Tests
Complete - FVI.1: Lane Keeping
Complete- FVI.2: Lane Changing

Other Tests
Complete - FVII.1: Pothole Detection
Complete - FVII.2: Merging

Simple Main
Testing- Simple Main

Table 5: Status of each IGVC function on design report submission date. (Planning, Developing, Testing,
Complete)

14

10. Unit Testing Results
The mandatory unit tests have been tested at the LTU test course. The following details the results of those tests:

Emergency Stop Object Detection

Speed Limit Tests

Lane Boundary Crossed

Reversing Speed Limit

References
[1] IGVC 2023 Self-Drive Design Report, http://www.igvc.org/design/2023/17.pdf (accessed 02-24-24)
[2] Mako g-319, accessed 05-15-31, https://www.edmundoptics.com/p/allied-vision-mako-g-319-1-18-inch-color-cmos-camera/33094
[3] 1st vision 1” 2 to 3 megapixel oem lens series, https://www.1stvision.com/lens/spec/1stVision/LE-MV3-0618-1, accessed 5-13-21
[4] Velodyne puck, https://velodynelidar.com/products/puck/, accessed 05-15-2023
[5] URG-04LX-UG01, https://hokuyo-usa.com/products/lidar-obstacle-detection/urg-04lx-ug01, accessed 05-15-23
[6] Swift navigation piksi multi gnss, https://www.swiftnav.com/piksi-multi, accessed 05-15-2023
[7] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating system,” in

ICRA workshop on open source software, vol.3, no. 3.2. Kobe, 2009, p. 5.
[8] Paul, N., Pleune, M., Chung, C., Faulkner, C., Warrick, B., Bleicher, S., A Practical, Modular, and Adaptable Autonomous Vehicle

Research Platform, IEEE International Conference on Electro Information Technology 2018
[9] Mitchell Pleune, Nicholas Paul, Charles Faulkner, C. J. Chung, Specifying Route Behaviors of Self-Driving Vehicles in ROS Using Lua

Scripting Language with Web Interface, 2020 IEEE International Conference on Electro/Information Technology
[10] Redmon, Joseph et al. "YOLOv3: An Incremental Improvement". arXiv. (2018)
[11] Kocherovsky, M., DeRose, G., Paul, N., Timmis, I., & Chung, C. J. (2024). Autonomous Vehicle Steering through Convolutional and

Recurrent Deep Learning. In Autonomous Vehicles and Systems (pp. 83-111). River Publishers.
[12] NIST Risk Management Framework, https://csrc.nist.gov/Projects/risk-management, accessed May 14, 2024

15

http://www.igvc.org/design/2023/17.pdf
https://www.edmundoptics.com/p/allied-vision-mako-g-319-1-18-inch-color-cmos-camera/33094
https://www.1stvision.com/lens/spec/1stVision/LE-MV3-0618-1
https://velodynelidar.com/products/puck/
https://hokuyo-usa.com/products/lidar-obstacle-detection/urg-04lx-ug01
https://www.swiftnav.com/piksi-multi
https://csrc.nist.gov/Projects/risk-management

