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ABSTRACT14

The Cooper IGVC Team is the primary research group of Cooper Union’s Autonomy Lab. As an15

organization, we’re dedicated to cultivating autonomous vehicle research at our institution. We also16

work to uplift the Cooper community through the mentorship of underclassmen with the development17

of workshops to cultivate skills generalizable to complex projects outside of IGVC. We pride ourselves18

on building our car full-stack. Students in Autonomy Lab have designed all core mechanical, electronic,19

and software systems, all of which are open source.20

I, Michael Giglia, certify that the design and engineering of the vehicle by the current student team21

has been significant and equivalent to what might be awarded in a senior design course:22
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1. BACKGROUND24

1.1. Organization25

The team follows a vertically integrated structure, divided into three disciplines consisting of three to five student26

groups, each led by a subteam lead who facilitates weekly meetings. The subteams correspond to abstract systems on27

the car: Hardware (Electrical + Mechanical), Firmware, and Algorithms. In addition to weekly subteam meetings,28

we hold weekly team meetings to keep everyone in the loop of new developments and bi-weekly sprint meetings to29

establish tasks for our bi-weekly test days.30

The hardware subteam designs and assembles all expansion hats for the Cooper Common Microcontroller Nodes31

(CCMNs), a custom #coopermade breakout board around the ESP32S3 microcontroller, to facilitate the needs of the32

Firmware subteam. In addition to PCBs, the subteam is responsible for maintaining the power distribution system of33

the car and designing mechanical components to retrofit our vehicle.34

Our Firmware subteam writes all our safety critical actuation code and custom tooling to supplement software35

development. They aim to write modular firmware, allowing for the fast extension of CCMNs attached to hardware36

hats to specific hardware applications.37

The algorithms subteam handles the perception and navigation of our car. They create & tune controllers, detect38

objects, perform localization based on camera and encoder data, and generate paths given all our component outputs.39

1.2. Design Assumptions & Design Process40

Our design process revolves around ensuring our systems are safe and easy to test in the cramped surroundings of41

the East Village in downtown Manhattan. We try to make our systems as modular as possible by breaking down every42

Autonomy Lab project into its various components, allowing for overlap between different projects we may take on.43

We host all our work in a publically available in a Git monorepo, which is licensed under copyleft licenses to ensure free44

access to our work to everyone. Maintaining a Git monorepo allows for easy collaboration on components, simplifies45

code review, and lets us accurately track changes to our work.46

Due to Cooper’s small size, it’s easy for us to keep tabs on one another to ensure things get done, but outside of47

meetings, we also communicate using a Cooper-hosted instance of Matrix. We also believe that maintaining good48

documentation is essential to avoid amassing technical debt, so we keep a mix of public-facing documentation in our49

monorepo and institution-specific documentation that does not make sense to share outside Cooper.50

∗ Team Captain
† Faculty Advisor
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2. SYSTEM ARCHITECTURE51

We like to think of our system as an hourglass. We aim to separate our hardware components as much as possible52

from the algorithms we write, where our car’s firmware is the narrow bridge between these two worlds.53

Major hardware components include:54

• Our new Brake-By-Cable system55

• Water-proof trunk for power distribution systems56

• DC-DC converters57

• Cooper Common Microcontroller Nodes58

• A CAN Bus for node communication59

• CCMN hats for our brakes, throttle, and encoders60

• An ODrive for controlling our EPAS61

Safety devices include:62

• Hardware E-STOPs around the car and inside the cabin63

• ATC and glass tube fuses64

• Circuit breakers65

• Undervoltage protection66

Major software modules include:67

• Shared firmware on all CCMNs68

• OpenCAN for serialization/deserialization of CAN messages at cyclic rates69

• Velocity and pressure controllers70

• ROStouCAN for interfacing between nodes on our CAN Bus and our ROS nodes71

• Lane detection algorithm72

• Stanley controller for trajectory following73

• A fine-tuned YOLO model for object detection74

• State machines for state and event transitions based on the output of our object detection and lane detection75

Even though we try to maintain our hourglass shape, it does not detract from the close collaboration between our76

subteams. For example, our Algorithms team needed more accurate braking on our vehicle this year, so they met77

with the hardware subteam to make this possible. It was then the responsibility of the hardware and firmware teams78

to work together to ensure our new brake system performed better without substantially changing how the system79

worked from the Algorithm perspective.80
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3. INNOVATIONS81

This year, we decided to redesign our braking system and move to a vision-based approach to path generation and82

object detection.83

Our previous braking system, based around a Hydrastar trailer brake system, was too powerful to allow consistent84

braking at low speeds. Our new braking system, dubbed Brake-By-Cable, is our solution to add fine control over the85

brakes. We installed a DC motor that rotates a pulley so that a cable pulls on the brake pedal. We utilize a pressure86

and current sensor as feedback for our control loop to allow for accurate pressure control as requested by our vehicle87

controller.88

To determine what lane our car is in and to calculate our heading and cross-track errors, we’ve decided to use two89

cameras placed on each A pillar of our vehicle. Since we can assume that our car operates on a flat plane, we measure90

points along lane lines to create a trapezoidal unwrap of each video feed, allowing us to use perspective transforms to91

make an image where distance is a linear function of pixels.92

Figure 1. Fitted lane lines.

For our lane detection algorithm, we use a sliding window approach. We divide the video feed from the pillar cameras93

into N windows, where we threshold all white pixels within each window. We then use the thresholded video feed to94

generate a polynomial model of the lane line. This approach allows us to remove outliers and mitigate noise in our95

input signals. Using these two polynomials, we can extract the cross-track error (the distance from the center of the96

lane) by comparing the distance between points on the polynomial and the front axle. We can also extract the heading97

error (the angle relative to the lane lines) by using a linear approximation of our generated polynomials at the front98

axle and determining the deviation from the vertical axis of the video feed.99



5

Figure 2. Object detection demo.

We’ve also gone away with using a LIDAR sensor for object detection and instead decided to use a deep learning100

model with a stereovision camera. We’re using Ultralytics’s YOLOv8 model for its state-of-the-art performance in101

real-time applications. We fine-tuned the model by freezing the first ten layers and training on a small dataset of102

common road obstructions and traffic signs.103
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4. DESIGN104

4.1. Mechanical105

Our mechanical design work revolved around retrofitting our vehicle so that it’s possible for it to drive itself. We106

added a gas-spring emergency brake, a brake-by-cable system, spring-loaded rear encoders, and a water-proof trunk to107

protect our power distribution system. In addition to this, we designed various mounts for sensors, microcontrollers,108

and our car computer. We lean towards aluminum and steel for rigidity and machinability when designing mechanical109

components to add to the car. We use 3D-printed components made from PETG filament for anything not load-bearing,110

and when possible, we drill mounting holes into our car’s frame to mount components.111

4.1.1. Emergency Brake (Parking Brake)112

We mounted a gas spring rated for 20 lbs of force to our vehicle’s parking brake and we hold it in the armed position113

during operation using an electromagnet. On each end of the spring, we bolted aluminum extrusions between 3D-114

printed spaces that are free to rotate. We machined brackets from 1/4” aluminum sheet metal to attach the spring to115

the aluminum extrusions and hold any 3D-printed pieces to the car.116

Figure 3. CAD drawing of the parking brake assembly in the open position.

4.1.2. Brake-by-Cable (BBC)117

We designed the Brake-By-Cable (BBC) system for fine control over pressure in the master brake cylinder to better118

replicate a human driver’s control over the brake pedal. We designed the system based on the constraint that it had to119

apply 100 lbs of force to displace the brake pedal by two inches in less than a second. We designed the entire assembly120

to fit in the small region between the master cylinder, differential, and steering arms.121

We chose a cable rated for 150 lbs to add a factor of safety. To reduce our motor’s torque requirements, we designed122

a 3:1 lever and machined it from 1/4” steel. We connect the shorter side of the lever to the brake pedal and the123

longer side to the DC motor. We machined a three-inch steel pulley to be within the diameter recommended by the124

manufacturer of our cable. We also machined an aluminum shaft coupler to connect the top cable to our DC motor.125

For the DC motor, we chose it such that the operating point of the system would be well below 20% of the motor’s126

stall torque. Additionally, we added an extension spring to the bottom of the lever to ensure that the cable stays in127

tension when the motor releases the brake pedal.128

We machined smaller pulleys from aluminum and used copper sleeves for the cable terminations on the lever and129

brake pedal. Each termination freely rotates using bronze bushing and shoulder bolts fastened to the steel components.130

The large backplate covering the entire range of motion of the lever is to ensure there are no pinch points in the system.131

Each side of the lever also has an M6 shoulder bolt and a limit switch so that our firmware can detect the end of the132

range of motion.133
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Figure 4. CAD drawing of the BBC.

4.1.3. Rear Encoder Mounts134

Critical for calculating odometry and velocity for the vehicle, this year, we designed the rear encoders to have more135

precision and less slip than the previous design. We designed and 3D printed a small wheel (1.6 inches diameter) that136

directly attaches to the encoder shaft. This wheel touches the inside of the car’s wheel so that we can measure the137

tire’s rotation. This geometry allows us to have over 30,000 counts per tire rotation. To ensure that the encoder wheel138

does not slip and maintains contact with the tire at all times, we designed a spring-loaded bracket that connects with139

the previous encoder mount’s bracket. The rotation point is an M8 shoulder bolt with thrust bearings on each side of140

the 1/8th-inch aluminum bracket to ensure low-friction rotation.141

Figure 5. CAD drawing of the rear encoders.

4.1.4. Weather Proofing142

To protect the power distribution system from weather, we designed and built a trunk that mounts to the back of143

the vehicle above the car battery pack. We made the trunk’s frame from 20mm aluminum extrusion, held together144

with brackets made from a laser-cut 1/4” aluminum sheet. We laser cut the trunk walls from 1/8” cast acrylic and145

fastened to the aluminum extrusions. For ease of access, we mounted the circuit breakers and under-voltage protection146

boards to the acrylic on top of the trunk. We bolted the extrusion pieces to the chassis to ensure a secure mount and147

used silicone caulk on the inside edges to ensure the enclosure is weatherproof.148
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4.2. Electrical149

Figure 6. Electric system diagram.

We distribute power from the 48V DC pack through circuit breakers, fuses, under-voltage protection, and DC-to-DC150

converters to various sensors, CCMNs, and our car computer. We daisy-chain all CCMNs with Cat6A cables that151

supply 12V DC power and our car’s CAN Bus. The boards have voltage regulators, buck converters, and e-fuses for152

safe operation and reverse polarity protection.153

4.2.1. Power Distribution System154

Four 12V DC, 120Ah AGM batteries connected in series power the car and the electronic stack above. This setup155

yields us 5.8kWh, which lets the car run for approximately six hours without needing to charge.156

The DC motor controller (a Pololu G2 High-Power Motor Controller) draws a lot of in-rush current when activated157

to drive the DC motor. To prevent our DC motor controller from drawing too much current from the DC-to-DC158

converters (causing their overcurrent protection to trip), we’ve connected them to a battery charger, which charges a159

12V battery connected to our DC motor controller. We’ve also added a fast-burn 7A fuse to the system to prevent160

damage if the motor stalls for an extended period of time.161

4.2.2. Electronics Suite162

We connect a CCMN to an actuator, defining its node identity by its expansion hat (if present). Each node interfaces163

with its actuator, listening to control inputs over CAN and broadcasting senor values of CAN. Webcams and our ZED2i164

are connected directly to our car computer.165

• Accelerator: sends two voltage signals directly to the throttle through relays to allow manual overrides.166

• BBC: interfaces with a DC motor via a motor controller to perform pressure control and filters the pressure167

sensor before feeding it to the built-in ADC of the ESP32S3.168

• Encoders: gets encoder ticks through level shifters.169

• Protoboard: a generic expansion board for prototyping new expansion boards.170
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4.2.3. Safety Devices171

Safety devices fall into two categories: mechanical/electrical devices and software.172

We use mechanical switches for e-stop buttons around the car to cut power to our low-voltage system, effectively173

disabling all autonomous aspects of our vehicle. Additionally, we’ve installed circuit breakers around the car so that174

all systems have to be explicitly enabled by a user, with the plus of adding over-current protection.175

On the electrical side, we have ATC fuses in line with each device. We’ve also added under-voltage protection to our176

48V battery pack to ensure its voltage does not fall below 40V and cause permanent damage. Finally, each CCMN177

has a Schottky diode e-fuse on its input to allow boards to survive accidental reverse input.178

On the software side, we have a supervisor CCMN that ensures we never latch in our vehicle’s autonomous mode. This179

node inspects CAN messages and, if all checks pass, can authorize other nodes on the CAN network for autonomous180

control. This authorization has a TTL on the scale of tens of milliseconds, meaning if any check fails, unauthorized181

components of the system will exit autonomous control.182

4.3. Software183

Our software falls into two categories: Firmware and Algorithms. Firmware creates the software interface between184

the hardware of the car, while Algorithms generates inputs that we feed into our Drive-By-Wire stack.185

As an example, let’s follow how a path generated by our Stanley controller interacts with the car. We publish this186

path as a ROS topic to another ROS node that interfaces with our CAN Bus. We then translate this CAN message187

on our velocity controller CCMN using a PID controller to a brake and throttle percentage. The throttle and BBC188

nodes then act on these inputs only if authorized by our supervisor.189

4.3.1. Extracting Items from the Current Scene190

We handle object detection through a combination of a real-time deep-learning model and an optical character191

recognition engine. We chose Tesseract’s OCR engine for reading road signs and only run it on signs detected by our192

instance of the YOLOv8 model. We also use point-cloud data from our ZED2i camera to compute the distance to193

detected objects. Once an obstacle is detected, its location relative to the vehicle gets published as a ROS topic.194

We use two web cameras mounted on the A-pillars of our car for lane detection. We use OpenCV to remove lens195

distortions and calculate a linear mapping between pixels and physical distances. From here, we threshold the image196

to detect white pixels and apply sliding windows to find lane-line positions.197

To detect which lane the car sits in, we compare the number of windows with less than a determined number of198

white pixels from our sliding windows. By nature, dashed lines have more empty windows, meaning we can determine199

legal road maneuvers without a need for additional localization.200

We achieve “sensor fusion” using the ekf_localization_node from the robot_localization ROS package. This201

node utilizes an extended Kalman filter to merge IMU and encoder data for better estimates of our car’s position.202

4.3.2. World Frame Representation203

We use odometry data from the ekf_localization_node to obtain the position and orientation information of204

the vehicle in the world frame. The ZED2i’s point cloud data measures the vertical and horizontal displacement of205

objects relative to the vehicle’s location. We then add the object’s displacement relative to the vehicle’s location from206

its starting point to determine the object’s location in the world frame. We then feed this information into a state207

machine for decision-making.208

4.3.3. Vehicle Operating Modes209

In self-driving mode, the vehicle operates in one of two states: lane keeping or land changing. A land change210

generates paths to avoid road obstructions by creating a clothoid path. We generate clothoid paths based on the211

car’s current position, orientation, endpoint, and final orientation. Our vehicle switches operating modes based on the212

conditions present.213

4.3.4. Trajectory Generation214

In lane-change mode, we operate purely on generated clothoid paths. A lane change gets triggered by a detected215

object. Once detected, the clothoid path gets generated and followed to avoid a collision. Additionally, we generate216

trajectories to merge into different lanes or to cross intersections.217
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Figure 7. We use Rviz2 to model vehicle dynamics at the control level: here, we demonstrate a generated path and the car
position calculated using odometry from our rear encoders.

4.3.5. Trajectory Following Controls218

After researching trajectory-based controllers, and testing with smaller steering robots, we determined that using a219

simplified bicycle model and the Stanley geometric controller would suit our vehicle’s needs for path following. The220

controller calculates a steering angle based on two errors: the heading error, the yaw compared to the desired heading221

of the path, and the cross-track error, the perpendicular distance from the center of an axle to the path). We calculate222

the steering angle using Equation 1. Where θe is the heading error, te is the cross-track error, v is the velocity, and k223

is the Stanley gain.224

δ = θe + tan−1

(
kte
v

)
(1)225

Figure 8. Kinematic bicycle model of a steering vehicle and the Stanley controller variables.
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We have two methods of calculating the cross-track and heading errors for the Stanley controller. For following226

generated paths, such as a lane change, we use the encoders mounted to the rear tires to track the vehicle’s current227

position and orientation. We calculate the Stanley errors based on the car’s location and the nearest point of the path.228

When following lane lines, when we have lines on both sides of the vehicle, we use the web cameras mounted to the229

top of the vehicle to detect the distance and angle of the lane lines relative to the car.230

4.3.6. Velocity Control231

On the Firmware side, once we receive a velocity command, the control node determines if the car needs to accelerate232

or decelerate based on the car’s current velocity. We feed the error between the desired and actual velocities into a233

PID controller (the outer loop). If the car needs to accelerate, we use a mapping between the desired acceleration and234

throttle percentage and send the appropriate command to the throttle node. If the car needs to decelerate, we use235

another mapping between deceleration and brake pressure percentage and send that command to the brake node.236

On the BBC node, we implemented another PID loop (the inner loop), which takes the error between the actual brake237

percentage (read by the pressure transducer) and the desired brake percentage to calculate the speed and direction of238

the BBC motor.239

Figure 9. Block diagram of our velocity controller.
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5. SYSTEM ANALYSIS240

While testing things individually, it’s easy to keep track of changes, but once integrated into our system, it’s easy241

to lose track of changes and decisions. One example of this was during the development of the BBC PCB. We broke242

the board into four main blocks: motor controller logic, parking brake logic, pressure sensor data, and limit switches243

for the lever’s range of motion. However, when testing the entire board, we found we would flip the polarity of certain244

pins, such as the input to the motor, or flip which connectors went to the minimum limit switch and the maximum245

limit switch.246

The best way to prevent such mistakes is to create a more robust, generalized system rather than case-by-case. For247

example, we can ensure every wire has a proper visible label rather than memorizing its location. Additionally, we248

can write out a simple checklist of what to check before testing something. By creating a more robust system, it is249

easy to prevent many of the smaller, simpler mistakes.250

5.1. Critical Hardware Failure251

One hardware failure that would prevent competition success is if an ESP32S3 were to fail. The ESP32S3, a low-252

power microcontroller, limits the amount of current it can supply. We maintain an external 12V battery pack on the253

car because even though a CCMN can supply 12V, it’s limited to tens of milliamps. We handle this by using isolated254

circuits to turn on/off the circuit i.e. using NMOS or PMOS transistors due to their high input resistance as a switch255

or using a relay to keep the two systems completely isolated.256

5.2. Software Development257

We store all code in a publically hosted monorepo on GitHub. We use Git as it allows us to effectively work258

in parallel, while the monorepo makes integration between various components straightforward. We utilize GitHub259

features such as issues and pull requests to keep track of problems with our code and encourage code review.260

5.3. Testing261

Before we test a particular algorithm or state machine on the car, and because our team is limited in physical space262

to which we can test the car, we test our ideas on smaller platforms, some of which we developed within Autonomy263

Lab. Carrie is our designed in-house mini-car robot platform for testing trajectory-following controllers. We tested264

and tuned the Stanley geometric controller for following clothoid paths, such as a complex path generated for parallel265

parking. We found the Stanley controller to be an effective method of calculating a steering angle for following a path.266

For testing with simplified dynamics, we used a differential-drive TurtleBot platform. To initially test and tune the267

OpenCV parameters for lane detection, we placed cameras on the Turtlebot and added a simple controller to follow268

the lane lines.269

5.4. Physical Testing to Date270

We tested the BBC system by cycling the motor between the two limit switches. The initial DC motor did not have271

enough torque and would stall before reaching the maximum displacement of the brake pedal. We sourced a more272

powerful DC motor with a higher stall torque, but this larger motor can pull up to 25 Amps. To ensure the motor273

does not pull too much current we installed a 7A fast-blow fuse on the battery supplying power to the motor.274

When measuring the pressure sensor output from the car, the original data for the pressure sensor was from 0.7V to275

2.0V. While this range of values is valid for the ADC readings to the ESP32S3 (within 0.15V to 2.45V), there wouldn’t276

be enough precision to accurately calculate the pressure percentage. By using a circuit that combines a non-inverting277

OpAmp and a subtractor op amp, we simulated a circuit that linearly remaps the pressure sensor range from 0.7V278

to 2.0V into 0.236V to 2.302V. In real-life however, we saw that the actual voltage range was 0.153V to 2.102V.279

This clearly demonstrates an example of when an ideal simulation is different from a real-world implementation. The280

reason for this difference comes from non-ideal components, device variations, and parasitic capacitance and inductance281

throughout our circuit in the op amps and resistors.282

We tuned the inner PID loop for BBC using a pressure transducer and recording the system’s response time. We283

found that a high proportional and small integral gain provided a fast response time with no overshoot. When releasing284

the brake pedal before installing the spring, the top cable would become loose and often fall off the pulley, causing the285

cable to become plastically deformed. After installing the spring to keep the lever and top cable in tension with the286

motor and pulley, we found a great improvement in the response time and reliability of the system.287
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For braking, once the inner loop’s response was well tuned and we could set and hold a desired braking percentage288

within 1 second, we characterized the relationship between brake percent and deceleration. First, we throttled the car289

to 10 mph, then set small increments of the desired brake percent to measure deceleration using the encoders.290

We ran tests using small increments in throttle percent to characterize the acceleration-to-throttle percent relation-291

ship. We measured the car’s acceleration using the encoders mounted on the rear wheels.292

To test the odometry for tracking position, we used Rviz2 to keep track of the car’s orientation and position relative293

to where it started in the world frame. Since we could not test the throttle indoors, we pushed the car while in neutral294

with the maximum steering angle to travel in a circle to ensure the odometry returned to where we started.295
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