
Autonomous Robotic Vehicle

University of Michigan

Submitted: May 15th, 2024

Team Captain: David Welch (dswelch@umich.edu)

Faculty Advisors: Xiaoxiao Du (xiaodu@umich.edu), Damen Provost (provostd@umich.edu)

Statement of Integrity: The design and engineering of the vehicle by ARV has been significant and equivalent

to what might be awarded credit in a senior design course.

Team Roster

Subteams Members Subteams Members

Executive

David Welch dswelch@umich.edu Business Connor Pang* pangc@umich.edu
Jason Ning zyning@umich.edu

Embedded
Systems

Joshua Ning* joshning@umich.edu
Alan Teng thtalan@umich.edu Eric Barbieri** ericbarb@umich.edu
Emily Wu emilyywu@umich.edu Aakash Bharat aakashvb@umich.edu

Platform

Drew Boughton* drbought@umich.edu Brinda Kapani bkapani@umich.edu
Chloe Akombi** cjakombi@umich.edu Yuvraj Singh uvsingh@umich.edu
Cara Blashill blashill@umich.edu Liam Donegan ldomegan@umich.edu
Yuri Carnino ycarnino@umich.edu Katherine Shih katshih@umich.edu
Aidan Deacon agdeacon@umich.edu Layth Abdelkarim laythabd@umich.edu
Simba Gao simbagao@umich.edu Eric Bi ericbi@umich.edu

Sensors

Kari Naga* knga@umich.edu Ruey Day rueyday@umich.edu
Annie Li** anranli@umich.edu Mahdi Chowdhury mahdichy@umich.edu
Yamato Miura yjmiura@umich.edu

Computer
Vision

Sydney Belt* sydbelt@umich.edu
Erika Chen erikachn@umich.edu Liyufei Meng** liyufeim@umich.edu

Navigation

Chris Erndteman* chrisern@umich.edu Arnav Shah arnshah@umich.edu
Benjamin Rossano** brossano@umich.edu Matthew Gawthrop mgawthro@umich.edu
Maaz Hussain maazh@umich.edu Taylor Nguyen taylorng@umich.edu
John Rose johnrose@umich.edu Ryan Beaudoin rbeaudoi@umich.edu
Krishna Dihora kdihora@umich.edu John Lancaster lancasjo@umich.edu
Ryan Liao ryanliao@umich.edu Awrod Haghi-Tabrizi ahaghita@umich.edu
Ethan Hardy hardyem@umich.edu Parsanna Koirala parsanna@umich.edu
Aarya Kulshrestha akulshre@umich.edu Krishna Sharma sharmakr@umich.edu
Ryan Lee ryalee@umich.edu Dev Srikar Nimmala dnimmala@umich.edu
Oscar Rangel oscarran@umich.edu Rohan Raju rrohan@umich.edu
Christian Chen chrc@umich.edu Nithin Reddy nkreddy@umich.edu
Matthew Prince mattpri@umich.edu Jonathan McFee jmcfee@umich.edu
Gordon Lim gbtc@umich.edu Tom Vu tomvu@umich.edu
Om Arora-Jain omaj@umich.edu Jovan Yap jovanyap@umich.edu
Akhil Nair aknair@umich.edu Sophie Li sophieli@umich.edu

*Lead, **Assistant Lead

2

1. INTRODUCTION

After a year-long development process, our team

is delighted to introduce the University of Michigan

- Ann Arbor’s Autonomous Robotic Vehicle Team’s

(ARV) new robot – mARVin for the 2024 Intelligent

Ground Vehicle Competition. ARV is supported by

both campus and corporate sponsors. The team is

supported by the University of Michigan Robotics

Department. Our corporate sponsors include TE

Connectivity, Mcity, Ford, Bose, Ann Arbor SPARK,

Aptiv, Siemens, General Motors, Bird, Northrop

Grumman, Milwaukee, and Raytheon.

1.1. Team Organization

Our team is organized into six subteams: Busi-

ness, Computer Vision, Navigation, Embedded Sys-

tems, Platform, and Sensors. The Business sub-

team handles sponsor relations, as well as the me-

dia/marketing side of the team. The Platform sub-

team designs and builds the robot chassis to fit

within the given design requirements. The Embed-

ded Systems subteam develops the electrical system

for the robot; this includes motor control, safety fea-

tures, the status indicator light, and the power de-

livery on the robot. The Sensors subteam configures

the robot’s sensors to compute odometry and Simul-

taneous Localization and Mapping (SLAM) to pro-

duce a map of the surrounding environment. The

Computer Vision (CV) subteam develops drivable

area detection algorithms using machine learning.

The Navigation subteam develops the path planning,

GNSS integration, and simulation environment. The

leadership team consists of the Team Lead, Oper-

ations Director, Engineering Director, and Student

Affairs Lead, as well as leads for each subteam. The

Team Lead, Operations Director, Student Affairs

Lead, and Engineering Director provide the general

direction and strategy for the team, and the subteam

leads focus on the technical development of their re-

spective subsystems.

1.2. Design Process and Assumptions

The design process for the robot follows a system

V-Model, Figure 1. The team placed an emphasis

on member education, and research-based projects

to develop industry-applicable skill sets. Through-

out the fall semester, the platform team consolidated

design requirements with the other subteams to de-

velop a CAD plan for the robot, while the other sub-

teams used the time for onboarding and algorithm

development. We held monthly design review meet-

ings with mentors to discuss design choices and the

implementation plan. In the winter semester, simu-

lation testing was done in parallel with robot fabri-

cation and hardware deployment. The final months

of the design process consisted of integration testing

of software and hardware on the physical robot.

Our project’s key design assumption includes min-

imum wheel slippage for accurate localization, suffi-

cient lighting for the vision system, an unobstructed

surrounding environment for accurate GNSS signal,

low noise in the radio frequency of the remote E-stop

ensuring reliable remote control, and a reliable power

source for the onboard electronics/sensors. Our de-

sign choices include a platform that facilitates the

accessibility of electronics and computing units, a

distributed architecture for computation tasks, and

a modular approach in both hardware and software.

The total cost of the vehicle is around $10,698, a

detailed bill of materials is included in Appendix C.

2. SYSTEM ARCHITECTURE

Power components include two nominal 13 V 50

A-hr LiFePO4 batteries, 12 V high power buck con-

verter, various fuses, power consumption measure-

ment meter, Neo brushless motors and Odrive S1

motor controllers. Key electronic components in-

cludes Nvidia Jetson AGX Orin, Razer Blade 15,

Velodyne VLP-16 lidar, Adafruit BNO055 IMU, Zed

2i depth camera, Ublox C099-F9P GNSS, optical ro-

tary encoder ISC3004, and STM32 Nucleo-F446ZE.

Key safety components include remote and physi-

cal E-stop and fuses. Documentation regarding the

interconnection between these components can be

found in Figure 2.

The software system includes a Zed 2i Stereo Cam-

era and a Jetson AGX Orin for lane line and pot-

hole detection with a machine-learning approach. An

MQTT Message Broker to transfer an occupancy

grid through ethernet. A simultaneous localization

and mapping algorithm (SLAM Toolbox) was em-

ployed to localize the robot and detect any obstacles

above ground level. An Extended Kalman Filter was

used to fuse the encoder and IMU data for a more

robust localization. An Occupancy Grid Merger was

implemented to overlay the Computer Vision and

SLAM outputs into a single map. The GPS node

will read the goal coordinates provided by the com-

pletion and set destination coordinates for the A*

and D* Lite algorithms. With a DWA local plan-

ner, the command velocities are sent to the STM32

Nucleo with USB protocol. The STM32 Nucleo pro-

cesses the incoming velocity messages and performs

velocity transform taking into account the gear ra-

tio of the customized gearbox and sends the desired

motor RPM to the two Odrive S1 motor controllers.

It is also possible to tele-op the robot with a PS4

gaming controller. A state selector is toggled with a

push of a button, to take in command velocities from

either the local planner or the PS4 controller, a mi-

croROS subscriber reads the current state and blinks

the status light according to competition rules. An

overview of the software system architecture is shown
in Figure 3.

3

Figure 1: The ARV Design Process

Figure 2: Electronics and Power Diagram

4

Figure 3: Connected Components

3. INNOVATIONS IN VEHICLE DESIGN

3.1. Computer Vision: Machine Learning

Given the complexity of environments for a

commercial autonomous vehicle, we introduced a

machine-learning approach for drivable area detec-

tion. This has improved our performance within the

scope of the competition and laid the groundwork

for applications with more complex, dynamic scenes.

For fast inference and good generalization on small

datasets we used a CNN based algorithm named You

Only Look Once (YOLO) for our driveable area seg-

mentation and pothole detections. We chose the

latest YOLO framework release, YOLOv8 because

it provides the best accuracy and has the largest

open-source models available for transfer learning.

By combining our lane, cone, and pothole detections

into one vision framework, we eliminate the need for

converting back and forth between 2D image and 3D

depth information which was resource-intensive and

introduced greater error margins when attempting

to render sensor and camera information into a 3D

world frame.

3.2. Platform: Elevated Rotating Camera Mount

The Zed2i camera is an essential component of

mARVin’s perception and is best mounted high

above the vehicle and at angles that don’t change

while the vehicle is moving. To meet these require-

ments, an elevated mount for the Zed2i camera,

shown in Figure 4 was designed using a planetary

gearbox to facilitate a controlled tilt at the precise

middle point of the camera lens. The imperfections

in the gear profiles due to 3D printing of the gear-

box also provided requisite resistance to perturba-

tions while driving, thus fixing the tilt angle.

Figure 4: CAD of Zed2i camera on rotating camera

mount

5

3.3. Embedded Systems: PCB Design

In an effort to reduce the noise and wire clutter in

the embedded system shelf, the team focused on re-

designing key electrical components — the 5V buck

converter and the Nucleo into custom Printed Cir-

cuit Boards (PCBs). The buck converter offered the

team an opportunity to learn Altium Designer, the

industry standard for ECAD while recreating an im-

portant device. After manufacturing and testing, one

self-designed buck converter was implemented in the

embedded shelf to convert the 12V output of the re-

mote E-stop to 3.3V. The next step was to design a

PCB for the STM32 chip that incorporated the exist-

ing connections. The schematic included the power,

UART, oscillator/clock, and reset/boot circuits that

are needed for a functioning STM32 board.

3.4. Navigation: D* Lite

A* is a common ideal path-planning algorithm

used in robotics. While it is relatively efficient com-

pared to more rudimentary algorithms such as Di-

jkstra’s algorithm, when traversing unknown terrain

and discovering new obstacles, A* recomputes the

entire path, causing repeated computation that can

slow down the system. For this reason, we created

a custom global planner using D* Lite. D* Lite is

also a heuristic-based optimal path algorithm, but

instead of replanning every new path from begin-

ning to end, D*Lite’s update step uses past informa-

tion to generate paths. D*Lite also computes paths

from the goal to the current pose instead of the pose

to the goal. This is useful when obstacles are more

likely to be discovered near the robot rather than

the goal (like in this case with road lines). In this

case, D*Lite only has to replan on a very small area

near the robot, as it keeps the larger path between

the goal and the obstacle. While both algorithms

generate ideal paths, D*Lite can provide noticeable

efficiency gains in scenarios where replanning is fre-

quently needed. In our simulations, we found D*Lite

to be around 30.368 % faster in ideal scenarios (see

Appendix B).

4. DESCRIPTION OF MECHANICAL DESIGN

The Platform subteam was responsible for design-

ing and manufacturing mARVin. Solidworks was the

primary CAD software utilized and tools used for

fabrication include drills, bandsaws, 3D printers, a

waterjet, and a laser cutter. The total dimensions of

mARVin are 34 inches in width, 44 inches in length,

and 65.5 inches in height. Figure 6 shows a complete

CAD model of mARVin in Solidworks.

4.1. Significant Mechanical Components

Key mechanical components of mARVin include

its driving gearboxes, powered and passive wheels,

and elevated rotating camera mount, all pictured in

Figure 5.

The two custom driving gearboxes facilitate mAR-

Vin’s differential drive by directly powering the driv-

ing wheels. Differential drive, completed by a back-

mounted freely-rotating castor, was chosen for its ad-

vantages in turning and simplicity of design and sim-

ulation. Each gearbox is driven by one Neo brush-

less motor and outputs at a 98:3 gear reduction.

This gear reduction was chosen based on the max-

imum competition speed of the vehicle and verified

for ramp traversal.

The elevated rotating camera mount has been in-

troduced as a Platform innovation in Section 3.2.

The planetary gearbox that rotates the camera was

modified from an existing model while the rest of the

mount was custom designed and 3D printed.

Figure 5: Top left: driving gearbox. Bottom left:

powered and passive wheels. Right: elevated rotat-

ing camera mount

4.2. Decision on Structure Design

The interior structure of mARVin is divided into

two sections to separate the electronics from the ve-

hicle loads. The frontmost region, pictured in Figure

6, provides a large and accessible area for electronics

to be mounted securely. An angled roof also prevents

water stagnation in the event of precipitation. Also

pictured in Figure 6 is the battery and payload sec-

tion, which is situated behind the driving wheel axis

to backset the center of mass of mARVin, prevent-

ing tipping of the vehicle during operation and trans-

port. Additionally, mounting the payload closest to

the rear of the vehicle makes it easily accessible and

prevents interaction with electronics or wires during

insertion and extraction. Shelving was also installed

to elevate the laptop, improving user interaction.

4.3. Weatherproofing

To protect electronics against debris during op-

eration, mARVin is completely shielded using thin

sheets of polyethylene. This functions as a rigid,

yet lightweight, defense mechanism against partic-

ulates during operation in nominal weather. Addi-

tional coverings for the bottom of the gearboxes have

also been printed to protect the gears from accruing

or otherwise transmitting outside material.

6

Figure 6: Top left: electronics housing. Bottom

left: load housing. Right: isometric view of mARVin

In the event of light precipitation, Figure 7 shows a

thin vinyl covering that can be secured to mARVin’s

exterior, effectively waterproofing the interior.

Figure 7: A demonstration of the raincoat protect-

ing the electronics stack while not limiting function

4.4. Suspension

Due to low operating speed and minimal distur-

bances on asphalt, a suspension system was not de-

signed for mARVin.

5. ELECTRONIC AND POWER DESIGN

The electronic and power design was implemented

by the Embedded Systems subteam. The team incor-

porated two Odrive S1s and a STM32 Nucleo board

to control various parts of the robot. Figure 2 shows

a diagram of the electrical and power system.

5.1. Electronics Suite Description

A wide range of electronics are deployed on the

vehicle, including computers, a GNSS, and motors.

These are described further below.

5.2. NVIDIA Jetson AGX Orin

The NVIDIA Jetson provides a high-speed discrete

GPU suitable for real-time image processing and ma-

chine learning acceleration. It pairs particularly well

with the ZED camera, as Stereolabs maintains an

SDK specifically for the Jetson. The Jetson provides

exceptional performance considering its power con-

sumption, form factor, and price. In addition, the

included development board has integrated HDMI,

Ethernet, USB-A, USB-C, and WiFi to speed up de-

velopment.

5.3. Razer Blade 15

The Razer Blade 15 has an Intel i7 CPU paired

with Nvidia RTX 3060 mobile GPU. This combi-

nation of hardware enabled the ability to perform

point cloud processing, localization and mapping,

path planning, and computer vision tasks simultane-

ously. The laptop form factor is convenient to work

with and allows for hours of testing without the need

to be powered as shown in Figure 8.

Figure 8: Laptop on the top shelf

5.4. Velodyne VLP-16

The Velodyne VLP-16 outputs a 360 degree 3D

point cloud with a refresh rate of 10 Hz. The Velo-
dyne has significantly increased range, accuracy, and

weatherproofing over the RP-LiDAR we used in pre-

vious years and has become an integral part of our

sensor systems.

5.5. Adafruit BNO055 Absolute Orientation Sensor

The BNO055 IMU provides absolute orienta-

tion, angular velocity, acceleration, magnetic field

strength, and temperature data. This sensor was

chosen because of its high refresh rate, low noise

data, and the well documented libraries and pack-

ages.

5.6. Stereolabs ZED 2i Camera

The primary draw of the ZED camera, shown

in Figure 9, is its low cost and high depth-sensing

range. Compared to other RGBD solutions, the

ZED camera offers much higher depth cloud resolu-

tion through software processing of the stereo images

for validation purposes. The Stereolabs development

team has provided a rich SDK with ROS integration

included, speeding up deployment cycles by reducing

hardware and embedded development time.

7

Figure 9: Mounted ZED camera

5.7. Ublox C099-F9P GNSS

The Ublox C099-F9P offers less than 1.5 meters of

horizontal accuracy. Our decision on the GNSS/GPS

system was a crucial design choice as we required

high accuracy yet demanded an affordable approach.

The Ublox C099-F9P offers exceptional horizon-

tal accuracy with even greater accuracy achievable

through RTK. Additionally, the Ublox C099-F9P

achieved our performance requirement at a reason-

able price point.

5.8. ODrive S1 Motor Controllers

The ODrive S1 motor controller offers a much more

streamlined user experience than the Odrive previ-

ously used by the team. It offers tight integration

with velocity commands, having built-in PID posi-

tion and velocity control. In addition, a wide vari-

ety of customization and diagnostic options provide a

significant quality-of-life boost while interfacing with

hardware. ODrive S1s are also able to add velocity

and current limits via software, creating another level

of safety for the vehicle. Currently, the maximum

speed is set to 5 miles per hour.

5.9. Neo Brushless Motors

The Neo motors were chosen to drive due to the

availability of the motors within the team. Its low

current consumption, empirically measured at less

than 2A per motor under load, will not put unnec-

essary strain on the battery system. Combined with

the gearbox, the Neo motors provide enough torque

to accelerate the robot to 5 mph within 1 second.

With additional power, the motor enables the robot

to climb slopes up to 20 degree slope while maintain-

ing 5 mph speed.

5.10. Phidgets Optical Rotary Encoder ISC3004

The Phidgets Encoder is mounted on the gear box.

With the calculated gear ratio, and the 360 CPR,

80 kHz data, we are able to interpolate the position

and velocity of the robot. These encoders also add

physical support to the wheel axles themselves.

5.11. STM32 Nucleo-F446ZE

The STM32 Nucleo-F446ZE (Nucleo) is the main

microcontroller of the robot. The Nucleo inter-

faces the hardware such as the encoders, E-stop,

LED lights, and Odrive motor controller with ROS2

through the use of microROS agents. Although mi-

croROS provided frameworks for interfacing with

ROS2, the team had to develop libraries for control-

ling the encoders, E-stop, LED lights and ODrive

motor controllers from scratch. The Nucleo board

offers significant upgrades from the previously used

Arduino as it has much more GPIO functionalities,

higher clock speeds, and microROS support.

5.12. Power Distribution System

The power distribution system consists of dual

nominal 13 V 50 A-hr LiFePO4 batteries connected

in series and step down converters. The two batter-

ies are connected to the main power rail that main-

tains a 26 V difference; this then feeds into a 12 V

high-power buck converter that is connected to a sec-

ondary power rail. The 26 V power rail directly sup-

plies power to two Odrive S1 motor controllers while

the 12 V power rail supplies power to peripheral elec-

tronics such as the LiDAR, the Nvidia Jetson, and

the remote E-stop. A buck converter converts the

12 V output of the remote E-stop to 3.3 V so it can

be safely fed into the Nucleo GPIO pin. The Nucleo

is powered by the laptop and the ZED 2i camera is

powered by the Nvidia Jetson. Historically, the team

used twelve 4700 µF capacitors connected in parallel

to ensure power integrity between power and ground,

however this is no longer necessary due to the in-

creased main power rail voltage from 12 V to 36 V.

Empirical power consumption of the robot is around

30 W at idle and 180 W when operating under load.

From aforementioned observations, it is derived that

the robot will have a battery life of around 20 hours.

The batteries will recharge to full within 2 hours.

5.13. Safety Devices and Integration

Being able to operate our robot safely is a key part

of the design. The main power from the batteries

is enabled to the robot by flipping a circuit breaker

mounted on the outside of the bot, easily seen and ac-

cessible by anyone. A 100 amp fuse protects the 26V

power rail and downstream devices from catastrophic

errors while a fuse corresponding to the current con-

sumption of each peripheral device protects the 12V

power rail. The ODrive S1s also have a 5 mph limit

and 30A current draw limit per motor set as part of

its configuration. Upon exceeding this threshold, the

ODrive will immediately halt the motor in violation.

To ensure that no safety issues arise during a run, a

physical E-Stop and a remote E-Stop is attached to

the Nucleo through hardware interrupt. When the

E-stop is enabled, the robot will come to an imme-

diate stop via a 0 m/s command that overrides all

8

other velocity commands. Pressing the remote and

physical E-stop buttons again will allow the robot to

resume where it left off. The remote E-stop has a

measured operational range of 150 feet.

6. SOFTWARE STRATEGY AND MAPPING

TECHNIQUES

The robot’s software is powered by the Robot Op-

erating System 2 (ROS2) running on a base Ubuntu

22.04 installation. In line with our modular de-

sign philosophy, ROS2 was selected as the robot’s

operating system due to its extensive modularity,

community support, and power features. ROS2

is a distributed networking and communications li-

brary that allows multiple devices to work together.

A ROS2 computation graph is divided into dis-

crete nodes that can publish and subscribe messages.

Nodes communicate with each other over TCP, al-

lowing them to connect to nodes on other computers

through our Ethernet switch. This system facilitates

the communication between different processes and

enables the team to work on independent tasks; each

software subteam can develop nodes entirely sepa-

rately from the others.

With our new approach to machine learning for

drivable area detection, further distributed archi-

tecture was necessary to facilitate efficient eval-

uation on each frame and eliminate latency be-

tween components. The machine learning algorithms

are being run on the Jetson AGX Orin and the

raw outputs are passed over ethernet to the lap-

top through a Mosquitto broker messaging proto-

col. Post-processing is done to perform a perspective

transform that positions the robot in a world frame

taken from its aerial view. This ensures compatibil-

ity with occupancy grids from computer vision and

sensors given to navigation.

The robot’s goal is to navigate through a series

of waypoints while avoiding obstacles identified with

data from the onboard sensors. Figure 10 shows the

connections between the sensors and navigation sub-

teams. The sensors team creates an occupancy grid

using a variety of different tools, which is then passed

to the navigation subteam to path plan to the next

GNSS waypoint. This process is explained in more

detail below.

6.1. Obstacle Detection and Avoidance

We use the Velodyne VLP-16 for identifying ob-

stacles above the ground level. It has a 100-meter

range, and 360° field of view, which is perfect for de-

tecting cones and other roadblocks. We use the ZED

camera for detecting ground level obstacles such as

lanes and potholes. With the raw camera feed as

the input, we run our two YOLO v8 models: seg-

mentation for drivable area detection between lanes

and around cones, and object detection for pothole

identification. After performing a perspective trans-

form based on camera parameters to render an aerial

view of the occupancy grid for the lanes and potholes,

we pass that information to our path planning algo-

rithm. Simultaneously, data from the LiDAR is fed

into SLAM Toolbox, which generates an occupancy

grid of the obstacles and localizes the robot in space.

Finally, both of these generated occupancy grids are

sent to the navigation stack, which reconciles the two

sources and uses a global planner and local planner

that work together to create a path to the next way-

point while making sure not to move too close to

any obstacles detected. Our custom A* and D*Lite

nodes are explained in more detail in the Software

Strategy and Path Planning section but allow us to

quickly change our pathing to avoid obstacles that

we may discover or encounter while moving.

6.2. Map Generation

We utilize a sophisticated pose-graph Simulta-

neous Localization and Mapping (SLAM) solution

called SLAM Toolbox. SLAM Toolbox offers a ro-

bust and highly configurable solution that permits

us high confidence in the quality of generated maps,

especially in noisy environments.

SLAM Toolbox integrates with ROS and provides

an occupancy grid containing the obstacles identified

in the point cloud data from the LiDAR. The gener-

ated occupancy grid is global and uses the odometry

data from our Extended Kalman Filter, which is de-

scribed in the next section, to dynamically update

based on new scans while maintaining localization

and previous state, meaning it remembers previous

obstacles it can no longer see and is a complete map

of the world visible to the LiDAR. At the same time,

we utilize data from encoders and the IMU in the Ex-

tended Kalman Filter, as well as LiDAR point cloud

matching to estimate the location of the robot in the

map.

6.3. Software Strategy and Path Planning

Sensor fusion between the IMU and wheel encoders

is accomplished through an Extended Kalman Filter

with careful weighting given to each sensor to en-

sure accuracy without drift. The GNSS was chosen

to be left out of odometric sensor fusion due to its

non-continuous nature, which testing revealed sig-

nificantly reduced the accuracy of pose estimates.

This data is then published as odometry messages

and used by SLAM to aid in mapping and the gen-

eration of the obstacle costmap. In addition to the

costmap generated by SLAM, our robot utilizes com-

puter vision data to create a separate map containing

lane line and pothole information. The separation

of the computer vision data and overall sensor data

highlights a major design choice in our robot’s map-

ping. After the generation of these two maps, one

from computer vision and one from SLAM, our robot
merges the two maps, utilizing the combined map for

9

Figure 10: Picture of the Map

path planning. The final costmap from lane/pothole

detection and SLAM is continuously provided to our

global planner, which uses one of our two custom

pathing algorithms nodes. Our first node is a cus-

tom A* node implementation, using the euclidean

distance as a heuristic function (while not as accu-

rate as other common heuristics such as manhattan

distance, can be calculated in constant time rather

than time linear with respect to grid size). Addition-

ally, we have implemented a custom D* Lite node

(Section 3.4).

We also created a custom behavior tree to limit

recalculating a path to only when there are new ob-

stacles that would directly interfere with the current

path of the robot. We created custom packages that

uses our custom A* and D* Lite code to replace the

base global planner provided in nav2. These pack-

ages include custom tuning that can be launched in-

terchangeably at robot initialization.

6.4. Goal Selection and Path Generation

The GNSS waypoints, provided by IGVC, are

transformed from the Geographic Coordinate Sys-

tem (Latitude, and Longitude), to our robot’s world

frame. Additionally, we transform real time GNSS

positioning data, from a u-blox C099-F9P GNSS,

into our robot’s world frame to calculate current

proximity to the current goal. During navigation to

a given goal, the GNSS node provides custom way-

points to our search algorithm. In the event that the

way points are outside of the global map’s bounds,

the GNSS node is able to create a temporary local

target at the intersection between the global map’s

boundary and the current goal. After the waypoints

have been assigned and a global path has been gen-

erated, we utilize the Dynamic Window Approach

(DWA) local planner to generate command veloci-

ties.

7. CYBER SECURITY ANALYSIS USING RMF

7.1. NIST Framework

The NIST framework contains the following steps.

Prepare: identify key risk management roles and

organization-wide risks. Categorize: determine the

adverse impact when the system is compromised. Se-

lect: choose and document the control that is nec-

essary to protect the system from the risks. Imple-

ment: materialize the selected control. Assess: de-

termine if the controls are correctly implemented,

and measure effectiveness against system require-

ments. Authorize: Provide accountability by requir-

ing a senior official to sign off on the control method

and implementation used. Monitor: continuously

monitor and assess the effectiveness of the control

to maintain situational awareness about the security

system.

For the first step in the NIST Risk Management

Framework (RMF) we established which team mem-

bers will be responsible for cybersecurity. The re-

sponsibility of security fell to our leadership mem-

bers, since they had a better understanding of the

high level concepts we are using. Our next step was

to categorize which systems may be vulnerable to at-

tacks. Our velocity commands were our most impor-

tant data to protect, since an attacker controlling the

robot could be physically dangerous. One example

of a NIST SP 800-53 control that we implemented is

AC-6(10) (prohibit non-privileged users from execut-

ing privileged functions). Our usage of AC-6(10) is

explained in more detail in the High Impact Threats

Analysis section, and our implementation is as well.

The passcode mechanism was assessed throughout

our development cycle, as we would have to use it

every time we wanted to work on the Nucleo board.

We have authorized the use of this system, and will

be maintaining it as we deploy it during the compe-

tition.

7.2. High Impact Threats Analysis

From the embedded systems standpoint, a high

impact threat can happen when an adversary gains

physical access to the Nucleo board, either through

using the USB connector or an JTAG connection,

which would allow them to gain access to the code

on the Nucleo board and upload unauthorized code.

Upon the insertion of malicious code, the adversary

will be able to inject commands to the Odrive S1, po-

tentially disabling E-stop and tele-op functions. One

control method that can effectively prevent the de-

scribed issue is through the use of memory protec-

tion and passcodes. To prevent the adversary from

uploading malicious code, a passcode program can

be implemented on non-erasable flash memory. The

passcode program will check some predefined regis-

ters for passcodes in the user-programmable mem-

ory to see if it matches with the pre programmed

passcode. This means that the adversary will need

access to the passcode, the location of the register

for the passcode, and physical access to the Nucleo

board in order to upload malicious code. In addi-

tion, STM32 chips offer Readout Protection (RDP)

10

level 1 protection which disables access read, erase,

and program to flash memory. Combining passcode

and RDP level 1 protection, the adversary will not

be able to read out the program on the Nucelo board

or upload malicious code without knowing the pass-

code. This method can be tested by attempting to

upload code to the Nucleo board.

8. ANALYSIS OF COMPLETE VEHICLE

8.1. Software Vehicle Failure Modes

If the vehicle becomes stuck or is unable to find

any possible paths to the goal, the vehicle will enter

a recovery behavior state. The vehicle will start by

slowly rotating in place to re-localize itself on the

created map. Once the vehicle has remapped the

surrounding area, and finds a path to the provided

goal, it will resume normal navigation behaviors. In

the extreme case that the robot is fully stuck in place,

it will increase the power provided to the motors to

forcibly remove itself from an obstacle.

In case of SLAM scan matching algorithm failure,

the newest odometry information is used to estimate

the current pose of the robot. SLAM nodes are up-

dated using forward projection according to the op-

timal solution for the pose graph.

8.2. Hardware Vehicle Failure Points

Mechanically, the robot could potentially fail from

the velcros and the plastic frames getting loose. Fur-

thermore, the bolt attachments could potentially get

loose. Electrically, the robot could violate user-

specified thresholds (speed, current, etc.), tripping

errors on the ODrive S1s which could shut off the

motors. Power supply to peripheral electronics could

be cut off due to a blown fuse. A LED indicator will

be lit on the power rail if a fuse is blown.

8.2.1. Failure Prevention Strategy

The general troubleshooting process for hardware

failures is as follows. First, check if the emergency

stop has been accidentally triggered. Second, ensure

that the status light on the Odrive S1 is flashing

green, indicating normal operation. Third, verify

the LED indicates the fuse’s normal operation on

the secondary power rail. Then, check that connec-

tor cables are securely attached. For software issues,

verify that software nodes are running and messages

are being transmitted. Run ROS troubleshooting

like roswtf, rqtgraph, and viewframes to verify that

the node and message graphs are properly set up.

8.2.2. Mechanical

To prevent the aforementioned mechanical failure

points, the robot has been designed with an alu-

minum frame, deferring most of the potential stress

on the velcros to the subsystems themselves. In case

this is not sufficient, the team will keep a surplus of

extra velcros to replace any loose velcro connections.

The bolt attachments have been designed so that

there are no shear forces acting on the bolt during

robot operation, mitigating this failure point.

8.2.3. Electrical

To prevent the aforementioned electrical failure

point, the Odrive S1 parameters are tuned such that

the robot will not violate the current limit under

normal operation. Additionally, the Odrive S1s are

connected to the laptop which monitors and clears

the Odrive errors when it arises.

8.2.4. Software

On the software side, there are many safeguards

put in place to prevent unwanted behavior of the

vehicle. First, the robot will not map and move to

locations that are in completely unknown space, out-

side the range of the global costmap. This prevents

the robot from moving outside of the emergency stop

range during testing. Additionally, real time SLAM

and path planning allows for dynamic obstacle avoid-

ance, so the vehicle should avoid any spontaneously

appearing objects on its path.

The sensors team utilizes sensor fusion concepts

to minimize the effect of a sensor failure. The data

from the IMU and the encoders are combined to form

odometry data. When either sensor fails during an

operation, the robot position can still be estimated

using the other sensor, though with less precision.

We have also added redundancy and modularity in

our sensor systems. There is a secondary IMU in

the Zed camera that we use as a backup source for

orientation and acceleration data, and encoder read-

ings can be provided by the Odrive motor controller
as well as our own wheel encoders. Thus, in a case

of critical encoder failure, it is possible to read data

directly from the Odrive by simply subscribing to

another topic in ROS.

The computer vision team utilizes buffers in their

machine learning models to ensure good output even

when there is a loss of data. Our software analyzes all

output from the model and if an unpredicted behav-

ior (no output, flipped data across lanes, sharp losses

in driveable area) is detected, we revert back to our

model’s previous reading. If our model continues to

output poorly we will output a full frame of drive-

able area which allows the robot to continue to move

to a new location and provide the model with a new

view. We also manually override the bottom rows of

pixels to guarantee the driveable area is always con-

nected to the bottom of the frame which guarantees

mARVin always has space to move forward.

11

8.3. Testing

8.3.1. Navigation

To test the navigation systems, we took advantage

of buildings on campus. We successfully planned

paths through hallways and large rooms containing

many obstacles such as tables, chairs, and pedestri-

ans. Waypoints were added during testing by di-

rectly adding a 2D navigation goal through RViz on

the onboard laptop. To test GNSS functionality, we

collected multiple rosbags of GNSS data while mov-

ing through Ann Arbor. This GNSS data was then

tested with the GNSS node code separately.

8.3.2. Drivable Area Detection

A course environment was laid out in a parking lot

with white tape for lane lines, white circles for pot-

holes, and cones for obstacles. The primary model

training and testing lanes were solid, but validation

was performed with dashed line, shown in Figure

11. We used teleoperation on the robot to navigate

through the course and force edge cases to determine

model performance in different scenarios. Physical

testing was performed running our two models in

the NVIDIA Deepstream SDK: object detection for

potholes and segmentation for space between lanes

and around cones. We were looking for two primary

visual metrics: accurate designation of the drivable

area and potential frames where we classify no areas

for the robot to go. Given the necessity of extensive

Figure 11: Model Testing with Different Lines

data for training and validation of our machine learn-

ing models, testing was also performed on videos and

frames from our parking lot course simulation and

old competition videos. We verified that confidence

scores were within a reasonable range (70-100%) and

that model performance was consistent from frame

to frame especially in the lower third of the frame

where our output matters most to the robot’s next

moves.

8.3.3. Sensors

Testing the sensor system involves testing individ-

ual sensors separately and integration testing with

a combination of different sensors. To test the en-

coders, we have pushed the robot on the ground,
ensuring no wheel slippage. We then verified the

various distances pushed with the number of rota-

tions recorded by the encoder multiplied by the cor-

responding gear ratio and wheel radius. To test the

IMU sensor, we were able to visualize the data col-

lected by the data in RViz and ROS. We have ob-

served fairly accurate orientation measurements but

a significant drift in the acceleration data. To com-

bat inaccurate readings, we wrote a custom python

calibration script that offsets the acceleration read-

ings to achieve better results, and we use data from

multiple sensors rather than just our IMU to build

our published odometry. To test the GNSS sensor,

we walked different movement configurations in the

parking lot, then plotted the collected coordinates.

Figure 12 shows the received coordinates for walking

in a straight line along the parking lane.

The sensor integration testing started with simula-

tion. We implemented a version of Extended Kalman

Filter (EKF) for robot state estimation, and com-

pared the estimated odometry data with the exact

odometry vectors that’s provided in simulation. We

also deployed all the sensors to the robot and pub-

lished the collected data to SLAM Toolbox. We

tuned the configuration file with an iterative ap-

proach and were able to make the map building effi-

cient and accurate.

Figure 12: GNSS coordinates from walking in a

straight line

8.4. Vehicle Safety Design Concepts

In addition to E-stops and software limits, both

failure prevention strategies and testing implement

several safety design concepts. For the software

and mechanical prevention strategies, a soft bumper,

made using a pool noodle, was included in the robot

to minimize any damage from potential collisions.

For the electrical prevention strategy, the robot is

halted to prevent any undefined behavior. For test-

ing, one person is assigned to solely operate the re-

mote E-stop, ensuring that someone can immediately

stop the robot when necessary.

8.5. Simulations in Virtual Environment

The robot and its sensors are simulated in Gazebo,

and the various types of data visualized in RViz.

These software were chosen because of their well doc-

umented integration with ROS. We have built the

12

robot simulation model from scratch, with simulated

sensors such as the IMU, depth camera, and LiDAR.

The Navigation stack and SLAM Toolbox subscribe

to the sensor data, generating the map of the planned

path in the process. The environment map, licensed

from UToronto, was based on the Auto-Nav course

illustrated in the competition rules. We found an is-

sue with lighting, but swiftly resolved it by editing

the lighting of the world.

8.6. Theoretical Concepts in Simulations

We were able to simulate and debug our SLAM and

autonomous navigation algorithms inside simulation.

To start with, we modeled the robot and its sensors

using the URDF format, and sensor plugins from

Gazebo and Toyota. We wrote custom launch files

to spawn and tele-op the robot into the competition

world. We were able to set up SLAM Toolbox inside

the simulation, subscribing to the LiDAR and IMU

nodes. We tuned the Python configuration files to

improve the map generation speed and quality.

One important theoretical concept that we im-

plemented in simulation was the ground filter. By

default, the lasers from the LiDAR will reach the

ground and make that into an obstacle. The ground

filter will delete points below a desired height to

achieve clean maps for navigation.

9. PERFORMANCE TESTING TO DATE

9.1. Component Testing

Individual components on the vehicle such as the

motor controller, wheel encoders, LiDAR, GNSS,

IMU, Depth Camera, wireless and physical E-stops

have been tested. We utilized a tele-op controller

to test the motor control, and RViz to visualize the

sensor data collected.

9.2. Integration Testing

As a team divided into multiple technical groups,

integration testing stands as an important step in our

development process. The Navigation, Sensors, and

Computer Vision team must all merge their outputs

to create a navigable cost map. This integration was

a complex challenge tackled by our team, as the out-

put from both Sensors and Computer Vision existed

in differing frames and resolutions. We began our

integration testing early by developing ROS 2 nodes

to produce “fake” output. The goal of these nodes

was to allow us to test the integration system while

the SLAM map and CV lane detection map were still

in development. This helped us catch many bugs in

our integration system, most notably we discovered

a transformation issue with our merging process. As

a direct result of these tests we altered our integra-

tion system to utilize tf2’s frame publishing for bet-

ter transformations between the SLAM map and CV

map. As we moved these systems from development

to deployment, we transferred to testing iteration in

simulation. The goal of these tests were to discover

issues with path planning on merged data and prob-

lems with the output of both the Sensors and CV

teams’ respective obstacle detection. This testing

took place inside our IGVC simulation world mod-

eling lane lines, cones, and a ramp. This testing di-

rectly exposed an issue causing the CV algorithm to

mark occupancy grid cells existing on the boundary

between known and unknown as obstacles.

For navigation and control integration testing, the

team started with ensuring the vehicle can be tele-

operated. The PS4 controller was used to provide

velocity commands to the Odrive motor controller.

We then verified the accuracy of the velocity by mea-

suring the wheel’s RPM against the desired veloc-

ity. Testing was deemed “good enough” when the

error between the command velocity and the wheel

velocity was less than 5%. At the same time, the

PID of the motor ensures the system is critically

damped and will reach the desired speed as fast as

possible with minimal overshooting. Additionally,

onboard sensors were calibrated and the Extended

Kalman Filter was tuned to ensure accurate localiza-

tion (without point cloud matching) with an error of

less than 5%.

9.3. Initial Performance Assessments

Metric Test Result

Max Speed 3.4 m/s

Acceleration 0.4 m/s2

Ramp Climbing 20 degrees

Laptop Battery Life 1 hour

Robot Battery Life 120 hours standby

20 hours running w/ motors

13

APPENDIX

A. TORQUE AND EFFICIENCY CURVES FOR NEO BRUSHLESS MOTORS

B. DSTAR LITE VS. ASTAR PLANNING SPEED COMPARISON

In order to compare the two algorithms we ran experiments in Gazebo using our simulated IGVC world.

Specifically, we ran our test using our mARVin V2 robot model on the south side of the track. We ran the

experiment ten times per planner to account for errors coming from any background processes running at time

of simulation. All runs were given the same initial position and goal. Both the D* Lite and A* planners were

also given the same global planning and robot speed/acceleration parameters. We found on average that D*

Lite preformed 30.3697% faster than A*. However D* Lite had a standard deviation of around 2.44 compared

to A* with a standard deviation of 1.44. We believe this is due to slight variation in sensor data, which in D*

Lite causes variability in the number of nodes needed to be looked at. Overall, we found that D* Lite was less

consistent in the time needed to run the model, but was generally faster than A*.

14

C. BILL OF MATERIALS

Item Price ($)
ODrive S1 Motor Controllers * 2 360

Neo Brushless Motors * 2 112

Phidgets Optical Rotary Encoder ISC3004 100

STM32 Nucleo-F446ZE 21

Various Buck converters 80

Wireless Receivers 17

Fuses and Power Rails 70

Physical Emergency Stop 10

LED Light 10

BNO05 IMU 30

Velodyne VLP-16 LiDAR 4000

ZED 2i Stereo Camera 500

Razer Blade 15 1600

Jetson AGX Orin 2500

Battery * 2 300

Wheel * 2 100

Gears 68

Fasteners 80

Plastics 150

Aluminum Sheet Stock 240

Aluminum Bar Stock 350

Total: $10698

