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Introduction   

After a four-year hiatus, the University of Cincinnati Robotics Team competed in the 2023 
Intelligent Ground Vehicle Competition (IGVC). Although we did not qualify for the autonomous 
component of the auto-nav challenge, we have since made significant strides in improving our robot, 
Dokalman MK2.6 following close behind from its 2.5 version. 

Following the 2023 competition, our priority has been to repair many components damaged 
during travel and enhance the simulation and navigation systems. Key upgrades include improving the 
motor controller software, cleaning and documenting electrical wiring, and replacing our camera systems, 
all aimed at increasing safety and reliability. As of this report, Dokalman's hardware and sensors are fully 
operational, and all sensor systems are functional. The UC Robotics Team is now focused on finalizing the 
navigation software in time for the 2024 competition. 

Team Organization   
Role Name Major Email* 

President Colin Campbell Computer Science campb3c7@mail.uc.edu 

Vice President Andrew Gerstenslager Computer Engineering gerstead@mail.uc.edu 

Treasurer Michael McAdams Electrical Engineering mcadammt@mail.uc.edu 

Secretary Christian Graber Computer Engineering grabercn@mail.uc.edu 

Member Phu Le Computer Engineering lepq@mail.uc.edu 

Member Sam Moeller Electrical Engineering moellesu@mail.uc.edu 

Member Caden Cruset Computer Engineering crusetcs@mail.uc.edu 

Member Dom Deliduka Electrical Engineering delidudp@mail.uc.edu 

Member Brian Drobnak Mechanical Engineering drobnabn@mail.uc.edu 

 

Design Process/Assumptions  
The Dokalman MK2.6, maintaining the re-engineered frame and custom gearboxes of its 

predecessor, optimizes space for integral components while meeting competition size limits. The design 
assumptions for our robot’s success are based on several key factors. Environmentally, the robot must 
handle sloped and rough terrain, necessitating a rugged design that withstands various stresses, and 
operate in adverse weather conditions, including rain and varying light levels. Our robot’s chassis has 
limited openings that expose the components to environmental factors and is sealed, protecting the 
critical computers inside from water damage. 

Operationally, the robot must perform tasks safely and reliably, with systems to detect and stop 
for hardware or software issues. It must maintain an average speed of at least 1 mph over a challenge 
run, travel above 1 mph over a 44-foot stretch at the beginning to avoid disqualification, and be governed 
to not exceed 5 mph. To prevent speeds over the limits, the robot contains a software limit in the motor 
controller to prevent speeds while under autonomous mode. If needed the robot’s speed could be tracked 
by requesting data from either the GPS, IMU, or the motor encoders. 

For user interaction, the robot’s operation must be easily stoppable through mechanical and 
wireless E-stop methods. Dokalman displays a red mechanical E-stop button, which is over an inch in 
diameter, and located at the center rear of the vehicle. The vehicle also has a wireless E-stop which is 
effective at ranges over 100 feet, and both bring the vehicle to a quick stop. Additionally, the robot must 
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be user-friendly with clear indicators of its mode of operation and status, indicated a solid indicator light 
that changes color based on mode or waiting state that switches to flashing in autonomous mode. 
Additional safety features will be outlined in later sections. 

In terms of design, the robot’s chassis conforms to dimensions of three to seven feet in length, 
two to four feet in width, and up to six feet in height, excluding the E-stop antenna. The robot’s design at 
its largest has the dimensions of 27” wide, 48” long, and 32” tall. The robot boasts a removable 100AH 
battery and optional AC-to-DC power ensuring long operation times as well as low downtime for 
maintenance. Dokalman also has a specially designed holder for a 20-pound payload with dimensions of 
18 inches long, 8 inches wide, and 8 inches high which sits right behind the wheels which helps with 
traction. 

Maintenance and documentation are essential for new and existing members, requiring a design 
for easy disassembly, clear component labeling, and comprehensive documentation. The UC Robotics 
Team has taken this practice to heart meticulously documenting many aspects of the robot. We have 
created diagrams outlining connections for the electrical power systems and network. We additionally 
have in our secure documentation the information of every device on the network, their purpose for the 
robot, and how to access each device. Additionally, the software is documented in the code and the 
structure of each package is kept as close to a standard as possible.  

For qualification, the robot must meet specified dimensions, verify the functionality of the 
mechanical and wireless E-stops, safety light, and speed constraints, and demonstrate lane following, 
obstacle avoidance, and waypoint navigation capabilities. We have ensured all the requirements as of this 
report writing except for the navigation capabilities which we plan to finalize. 

System Architecture 

Mechanical: 

Our mechanical system is designed to be rugged and durable. The wheels are equipped with a gearbox 
each with an overall ratio of 30.38:1. These gearboxes ensure better control over the robot’s movement 
and help to create a more fluid driving experience. The gearboxes increase the available torque to the 
wheels which ensures that the vehicle has the appropriate power to drive over any terrain. There is no 
suspension, but from past experiences from the IGVC and knowing the physical limits of the gearbox, 
there is more than sufficient stability for navigation in harsher environments. 

Electrical and Network: 

 The Dokalman MK2.6 can be powered either by a 12VDC, 100AH battery for driving operations or 
by a 120VAC to 12VDC converter when driving is not required. Several onboard DC-to-DC power 
converters provide the different voltages needed by the electrical components. 

Dokalman MK2.6 houses several computers. The NUC serves as the primary computer, handling 
most computing and navigation tasks. A Jetson Xavier manages image processing, while a Raspberry Pi 
oversees serial communications between ROS2 and the Arduino Mega. The Arduino Mega controls the 
driving code, lights, GPS, and IMU. Additionally, the Raspberry Pi requests encoder information from the 
Arduino for navigation nodes in ROS2. The Arduino Mega, communicates to a pair of devices created by 
Dimension Engineering which are the Kangaroo Motion Controller and the Sabertooth 2x60. These 
Kangaroo receives motor commands and executes them through the Sabertooth or can also receive 
commands that request the robot’s current speed and encoder state. 

Many devices are connected on a central network. This network is the main transportation 
method for data that is shared across all devices to publish and subscribe to different types of data via 
ROS2. This network is shared with the companion base station which allows remote access and internet 
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into the robot. This allows for a much smoother development process as the devices on the robot are 
accessed without the need to introduce additional cables or the need to plug into the robot as it is 
deployed in the field. Only a proximity to the base station is required as the base station can transmit data 
for 100s of feet with no issue.  

Safety Devices: 

The robot's operation is governed by multiple safety devices and systems. There are two ways that 
power can be physically blocked to the motors to stop the robot. A prominent feature is the large red 
emergency stop (e-stop) button on the roof panel, which cuts all power to the motors when pressed. 
Additionally, a remote-controlled relay on the same circuit can break the power connection to the motors. 

Several software systems also ensure the robot's safety. The Arduino controlling the motors has a few 
systems in place to protect the device and the operators near the robot. The Arduino monitors the 
connection to the RC receiver and halts the robot if the controller disconnects. Furthermore, if the RC 
receiver is connected and set to a specific mode, the robot is prevented from driving by the Arduino 
sending repeated stop commands. In addition, a ROS2 topic has been implemented to stop the robot 
whenever any device on the network sets the topic to False which the Pi informs the Arduino to exit 
autonomous mode and send stop commands. This allows the flexibility for many systems to stop the robot 
when different situations call for it. 

Software Modules: 

There are a few primary software modules in the system. These software packages are modular 
and easily replaceable due to the modular nature of ROS2. For sensing, there are modules for retrieving 
raw data from the motor encoders, LiDAR, GPS, IMU, and 3 cameras. The camera data is then passed 
through our custom image pipeline and converted to a point cloud for navigation and localization.  

The robot also has a motor module hosted on the Pi and the Arduino to control the motors and 
LEDs. This module is responsible for interfacing ROS2 to the Arduino while also allowing optional remote 
control. Additionally, the Arduino manages the robot’s indicator lights which display the status of the 
robot. The main control modes of the robot are managed by the RC controller and these modes determine 
which input the Arduino should respond to as motor control.  

For simulation, we have a software module designed to simulate Dokalman MK2.6. This simulated 
robot is 3D modeled to have the same geometry as the real-life robot. Additionally, there are simulated 
sensors that match the design of the sensors on the robot. This is all simulated in Gazebo and the status 
of the system can be analyzed utilizing the provided ROS2 tools such as RQT and Rviz2.  

We are still working on the localization and navigation module for the robot. Currently we have 
prototype waypoint followers and SLAM map generation working. We are in the process of combining 
these systems into one robust and cohesive navigation stack utilizing NAV2. 

Interactions in vehicle: 

 All components are powered by the battery or AC to DC converter with the addition of the 
onboard DC to DC converters that provide required specific voltages. The sensors and computers 
interact through serial communication and the network with ROS2 to receive and transmit data 
between various nodes to perform tasks such as image processing and environment mapping. The 
nodes, after creating a map of the local environment using the sensor data, use ROS2 hardware 
interfaces and plugins to communicate from the Raspberry Pi to the Arduino Mega which drive 
commands need to be performed. The Arduino Mega then communicates this information directly to 
the Kangaroo Motion Controller and 2x60 Sabertooth to drive the motors. The safety mechanisms in 
place ensure that this is all completed in a safe and stoppable manner. 
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Key Innovations 

Our robot’s vision system is our newest innovation as ROS2 allows us to connect as many cameras 
as we would like by having reusable ROS2 image pipelines. Currently, we have 3 cameras on the robot. 
Each camera is calibrated to the ground plane, which allows the raw feed to be skewed to generate an 
accurate top-down view of the ground, then the images are converted to point clouds and then combined 
which generates over 270 degrees of ground vision around the robot in over a 10 ft radius. This amount 
of vision provides the robot with a large ground view that can see any obstacle around the robot. This 
development is inspired by cars that provide a similar view to drivers as they back up so they can see the 
ground around them on a screen. Our addition to this technology that we are combining the pointcloud 
comprised of multiple camera views with a LiDAR’s point cloud. This allows barrels and lines to aid the 
other data type where there are overlaps in the data. 

Additionally, Dokalman does not have a sensor pole. Our team believes that a tall sensor pole is 
not feasible for a production ready robot and could be easily damaged. This means that the robot can stay 
compact and if taken into production, all the components could be safely secured and installed in the 
robot without fear of theft. 

One of the key innovations for our robot is its companion base station, an auxiliary robot that 
serves as a network connection hub. This base station is equipped with a Wi-Fi access point, allowing 
wireless devices such as laptops to connect to the network. This network is then shared between two 
paired M2 Bullet devices, which act as a bridge between the robot and the wireless access point utilizing 
radio communication. This setup enables remote access to devices on the robot and provides network 
access to computers on the Wi-Fi network and all computers on the robot. The network can connect to 
an existing network via Ethernet from another router/wall or use its onboard 5G router to link all devices 
to cellular data. The base station is innovative in the fact that the robot can be remotely accessed and 
controlled through its network for development purposes. Remoting into the robot to develop code, 
updating packages, or connect to the central code repository becomes trivial. 

Mechanical Design 

Overview   

The hardware configuration of Dokalman MK2.6 remains 
unchanged from 2023, maintaining the same components and 
design elements as in the previous version, with the exception 
of an additional camera.   

Dokalman’s elements consist of four main sections: the 
drive platform; frame; hinged top panel; and the electronic 
panels. The drive platform consists of the bottom tray, two 
gearboxes, and the front caster wheel assembly. The top panel 
acts as a weatherproofing shield around the drive platform and 
electronics panels while also allowing quick access to the 
robot’s interior through an electronic latch. Mounted on the top panel are three wide-angle cameras, 
a LiDAR sensor, and two GPS antennas. The electronics panels include two MDF panels for power 
management, networking, computers, and an IMU sensor. The status lights are mounted to the lidar 
assembly of the robot.   
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Frame Structure, Housing, and Structure Design   

The drive platform consists of two panels which act as a lid/rim on top and a pan on the bottom. Both 
of the panels were laser cut and bent to shape. The framing of the robot is created from laser cut 
aluminum struts attached by rivets to the pan and rim. The top panel was then attached to the top rim by 
a rubber hinge. The all-aluminum construction of the frame allows for a robust and lightweight frame. 
Acrylic panels line the outside and are secured with screws to the frame. The top panel is hinged and 
locked down with an internal latch that allows access to the electronics while also being  secure from 
unwanted access. To account for heat in a closed system, two fans located at the back of the robot act as 
an air intake and exhaust to help circulate fresh air through the system.  

Suspension   

With the rugged design of the gearboxes and robot assembly, we do not have a suspension system 
on the robot. Because of this we do remove a failure point on the robot. As the competition is held on 
pavement this year as well the terrain does not warrant the need for increased suspension. Though adding 
suspension could help with the accuracy of the camera line detection systems and LiDAR readings, we 
think any negative effect is marginal.  

Weather Proofing   

The Dokalman MK2.6 is capable of functioning in almost all types of adverse weather scenarios, 
barring the most extreme. The minimal openings in the robot’s enclosure protect the robot from rain and 
dust entering the inside of the robot. Additionally, the electronics are raised on panels inside the robot 
meaning that in the rare case that water enters the enclosure, the water will not have any opportunity to 
contact any components.  

The top circumference of the robot features a sealed top panel, achieved by compressing a rubber 
weatherstrip, creating a secure seal when the panel is shut. Instead of a conventional hinge that may allow 
water seepage through crevices, the panel's hinge is constructed from solid plastic for enhanced 
protection.  

The top and bottom panels are bent and welded seamlessly to prevent the penetration of water or 
dust. Any apertures present in these panels are equipped with a grommet or sealed in other ways.  

For added security, the robot's interior electrical panels are elevated from the base panel. This design 
ensures that in the event of any water intrusion, the liquid would accumulate at the bottom, thus 
minimizing the potential damage to the electronic components.  

Electronic and Power Design 

Overview   

 Dokalman MK2.6 is powered by a 12VDC car battery when operating the motors or an AC-to-DC 
converter when under maintenance. It is designed with a fuse, several relays, and several emergency 
stop components in case there is a fault. DC-to-DC converters are used throughout to provide the other 
required voltages for some of the components and a Rigrunner is used to regulate the 12VDC to the 
more vital and sensitive electronics. The central electronics suite vital to the operation of Dokalman 
MK2.6 consists of onboard sensors, 3 computers, and the motor drive electronics. The sensors and 
computers can always remain in operation while the motor drive electronics are enabled through 
several emergency stop devices. 
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Power Distribution System 

Dokalman MK2.6’s primary power source is a single 12V 100AH deep-cycle lithium iron phosphate 
battery that provides 3.3 hours of driving and recharges in 8 hours. Power for the robot is controlled by a 
120A resettable fuse which will trip in the case of a short or other high current event. Off this fuse, the 
2x60 Sabertooth motor controller power is gated by a 120A relay controlled by e-stop circuitry. The e-
stop circuitry consists of a 120A relay controlled by the large e-stop button on the top of the robot as well 
as an additional remote relay. Auxiliary power for the robot for sensors, computers, and other electronics 
are first passed through a networked RIGrunner, then either regulated or boosted to the required 
voltage.  Network components, such as the M2 Bullet and network switch, and components used for 
driving the motors do not receive power through the Rigrunner.  

Electronics Suite 

The central electronics suite for Dokalman MK2.6 can be separated into several subcategories: motor 
drive electronics, computer network, and sensors. Other electronics that are not part of the main function 
of the robot consist of the other network electronics that allow Dokalman MK2.6 to be accessed and 
updated remotely. Most of the robot consists of either individual wires for short connections to nearby 
components or shielded cabling for sensors and components further apart. 

Motor drive electronics incorporate 4 12VDC motors (2 for each wheel), a 2x60 Sabertooth, a 
Kangaroo x2 Motion Controller, an Arduino Mega, mode LEDs, and an RC receiver with its controller. The 
2x60 Sabertooth and Kangaroo x2 Motion Controller allow for better control and tuning of the robot while 
also allowing the user or ROS2 network to get the speed and position of the motors through UART serial 
communication. The Arduino Mega is used with the RC receiver and controller for manual control of the 
robot, setting the modes, and ensuring the LEDs reflect the current condition. 

The computer network is one of the most vital aspects of the robot and consists of 3 computers: the 
Jetson Xavier, NUC, and a Raspberry Pi. Each computer handles a specified series of tasks for the function 
of the robot and communicates them to each other and other components through either UART serial 
communication or ROS2 nodes. The Software System section of this report goes over these tasks in more 
details. 



9 
 

Dokalman MK2.6 features several sensors used for navigation. Two GPS receivers are used to obtain 
the location and heading of the robot which is compared with readings from an IMU and 2 motor encoders 
to ensure accuracy over time and distance. For obstacle navigation, the robot uses 3 cameras, located on 
the front left, front, and front right of the top cover, and a 2D LiDAR located on the center of the top 
cover. The cameras with the Jetson Xavier are used find the lines and simulated potholes for the 
navigation to avoid. LiDAR is used primarily to avoid barrels and any other obstacles that are taller than 
Dokalman MK2.6.  

Network 

Other electronics not vital to driving and navigation consist of the M2 Bullet antenna and the network 
switch on the robot and the base station. The base station electronics consist of a WiFi access point, 5G 
router, a WAN connection port, and an M2 Bullet antenna. These allow connection to the base station 
that extends the network permitting internet and remote access to work on software and view sensor 
readings and environment mapping. Connections between the base station and Dokalman MK2.6 are 
shown in the figure below.  

DISCLAIMER: THE BASE STATION WILL BE USED FOR MAINTENANCE AND VIEWING THE READINGS ONLY. 
NO COMPUTATIONS OR COMMANDS WILL BE SENT TO DOKALMAN MK2.6 AT ANY POINT DURING 
DRIVING. 

Emergency Stops 

 There are several emergency stops in place to prevent the robot from running off. The top cover 
has a red emergency button near the back that can be pushed to cut power to the motors. Similarly, there 
is a separate E-stop remote that is wired in series to the button to do the same thing. Alternatively, the 
robot could be placed into stop mode (shown by red LEDs) by the RC controller, or the controller could 
just simply be turned off. There is also a software stop implemented as a ROS2 node when there is a 
communication failure from one of the components on the network. 
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Software System 

Overview 

All the code on the robot is managed and connected through the Robot Operating System 2 
(ROS2) framework. This allows us to modularize different software components as well as utilizing 
premade packages for some of our hardware by running code inside of nodes. These nodes communicate 
with each other via ROS communication primitives, consisting of publish-subscribe (ROS topics) and 
remote procedure calls (ROS services). These nodes can communicate with each other as long as they are 
running on the same network with the same domain id. The devices running such ROS2 nodes are the 
Intel NUC, NVIDIA Jetson Xavier, and the Raspberry Pi. There is also firmware running on an Arduino that 
controls the motors and LEDs. 

Currently, we have the vision data processed into a usable format (described in detail below). We 
plan to integrate the GPS as the ground truth updates for location but will use dead reckoning between 
GPS updates to localize the robot. This will be calculated with a Kalman filter using the encoders and imu. 

The navigation is still in its prototype phase. Dokalman has proven success in simulation with basic 
waypoint following, and we plan to finalize the navigation systems this coming week. 

Motor Control, Operating Modes, and Sensors 

The Arduino communicates with both the Raspberry Pi and the Kangaroo motor controller. It also 
receives data from an RC receiver and the encoders. The Arduino detects when the Kangaroo is powered 
on by sensing the voltage from the device and then waits for the controller to bind. To calibrate the ranges 
and dead zones on the controller, the user moves the joysticks to their maximum range in all directions 
and then the Arduino will proceed into the next mode of operation. 

The Arduino’s main loop is dependent on the state of a three-state toggle switch on the RC 
controller, which includes the following modes: STOPPED, SELF DRIVE, and RC CONTROL. In the STOPPED 
mode, the Arduino continuously sends stop commands to the motor controller to ensure the robot 
remains stationary. In RC CONTROL mode, the Arduino reads the joystick signals from the RC receiver. The 
left joystick controls the robot's speed, while the right joystick controls its direction, allowing for both 
indoor and outdoor operation. 

In SELF DRIVE mode, the Arduino is stopped and then waits for an initialization command from 
the Raspberry Pi. Once the command is received, the Arduino will pass through motor commands over 
the serial port. The Arduino at the same time will report encoder values and the status of the system at 
regular intervals over the serial port, which the Raspberry Pi then broadcasts to ROS2. The Pi is also 
responsible for relaying the commands of whichever mode (I.e. GPS, lane following, or a combination of 
both) is currently being calculated and run.  

The Raspberry Pi handles the other various serial communication tasks. The Pi communicates to 
the Arduino, GPS, and IMU over various USB serial connections. The Pi is also running the Velodyne LiDAR 
node as well to initiate data streaming. The Pi then broadcasts this data to the network over ROS2 so 
other devices can utilize the available data. 

The Nvidia Jetson Xavier handles the input from three separate USB cameras. These cameras are 
calibrated before operation to determine the optimal threshold for line detection as well as the 
transformation matrix used to skew the images to a top-down view. 

Vision System 

The vision subsystem plays a crucial role in handling and processing the vast amount of visual 
data, refining it into more actionable information for the control subsystem. This subsystem consists of 
an NVIDIA Jetson Xavier module accompanied by three wide-angle USB3.0 cameras. To effectively manage 
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the data, the NVIDIA Jetson Xavier module efficiently processes each of the cameras through C++ image 
pipelines running through ROS2.  

The pipeline for each camera consists of a few components. First the raw image is extracted. Then 
the image is skewed such that the view of the ground is calculated to a top-down view to make the 
representation of the ground more accurate. Then lines are detected from the image using thresholding 
and blob detection to find large continuous sections of white in the image. The binary image (line and not 
line) is then converted to a point cloud. The robot can have an accurate top-down representation of these 
obstacles in approximately a 300-degree radius with a range of over 10 feet in those directions. This point 
cloud is then projected into space with ROS2. This process is repeated for each camera. An example of 
this is shown below: 
 

 

The top right environment is a test world in Gazebo where the lines, barrels, and calibration 
checkerboard are all visible. On the bottom left is the Rviz2 view where the lines on the ground are visible 
as white point clouds as well as LiDAR object detection represented by the red point clouds visible.  

World Representation 

The vision and LiDAR point clouds can be used together to help detect all obstacles required by 
the competition. Running SLAM on this combined dataset will provide an accurate map of the obstacles 
currently and previously seen. Doing so, an accurate map of the taken path will be generated. The robot 
also tracks its heading in the world and the bearing towards the next GPS waypoint. This is all used to 
calculate the optimal path to take. Outlined in the following section. 

Navigation 

The intel NUC by design is solely responsible for running the navigation on the robot. As we are 
using ROS2 for our communication between devices, we are utilizing the NAV2 ecosystem provided by 
ROS2. Some of the tools we use are the slam-toolbox and waypoint follower. We currently have a 
waypoint follower working in simulation. We have successfully tested the robot with predefined waypoint 
paths and randomly generated waypoint scenarios. We are in the process of integrating obstacle 
avoidance with LiDAR and once that is completed, we will add in the vision point clouds with the same 
process and believe this will be sufficient to navigate through the IGVC course.   
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Innovations and Experiments 

We are experimenting with deep neural networks as an AI powered navigation system. This 
system operates through a methodology called imitation learning. Using recorded sensors as inputs and 
the human operator’s actions as the truth, we can teach the network different policies. We have tested 
this on waypoint following with inputs to the network as the heading and bearing angles and the output 
as steering angle. This has had varied results, and further tuning is required to determine the success of 
such systems. We plan to test line and obstacle avoidance immediately after completing this report. If this 
testing is successful, we may integrate this into our final navigation system. 

Cyber Security Analysis 

Scenario Overview 

In the scenario of a rival team attempting to disrupt our robot’s software in the pit area, we will 
employ the NIST Risk Management Framework (RMF) to identify and mitigate these risks. The RMF 
consists of seven steps: Prepare, Categorize, Select, Implement, Assess, Authorize, and Monitor. 

Prepare 

To prepare for potential risks, we develop a comprehensive risk management plan. This plan 
identifies potential threats to our robot's software and outlines our approach to each situation. We follow 
a baseline control selection approach, which includes categorizing types of risks and selecting a set of 
security controls based on these risks. 

Categorize 

We identify several risks associated with our robot's software: 

• High Risk: An adversary could modify software on an open PC, especially if it has a remote 
connection to a device on the robot. Unauthorized software changes could be pushed to our 
repository and end up on the robot when devices pull updates. 

• Moderate Risk: Unauthorized access to computers by discovering passwords. This risk applies to 
devices like Raspberry Pi, NUC, Jetson, or any team member’s PC. 

• High Risk: The Arduino can be flashed from any computer, potentially allowing unauthorized code 
changes. 

Select 

We select a baseline control policy using NIST SP 800-53B as our guide: 

• Control Baselines: Choose pre-defined sets of controls tailored to the impact levels of our 
information systems (low, moderate, high). 

• Tailoring Controls: Adjust these baselines to suit our specific needs and operational context, based 
on our risk assessment and stakeholder requirements. 

Implement 

To implement the selected controls our team uses these risk-minimization techniques: 
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• Physical Security: Team members practice behaviors such as locking unattended laptops and 
closing remote connections. 

• Access Controls: Members must be invited to password-protected repositories, and only 
designated team leads can approve changes to the main branch. 

• Multi-Layer Security: Access to the robot’s computers requires multiple layers of passwords. 
Primary access is through the network of the base station and then remoting into the computer. 
An adversary would need to gain access to the network, identify the correct computer, and know 
the username and password. 

• Change Tracking: Git’s built-in tools are used to easily identify and track changes in the code. 

Assess 

During the competition we will assess our techniques by: 

• Monitoring code changes throughout the competition 

• Monitoring access to our network and computers 

In the future we will perform penetration tests and determine the security of our network and ROS 
communications. 

Authorize 

Authorization measures include: 

• Password protection for team member access only. 

• Restricting network access to only authorized devices through controls on our router, such as a 
whitelist of authorized IPs. 

• Limiting repository access and code change approvals to a few authorized members. 

Monitor 

Continuous monitoring methods include: 

• Network Monitoring: Use the router to monitor devices on our network. 

• Code Monitoring: Track changes in the repository and on our devices using Git tools. 

• Incident Response: Establish protocols to quickly respond to and mitigate any detected security 
incidents. 

Conclusion 

Implementing the NIST RMF allows us to systematically identify, select, implement, and monitor security 
controls, ensuring robust protection for our robot’s software against potential disruptions by rival teams. 
malicious code was injected and saved, we can always track when this incident occurred, and identify and 
remove those changes.  

Vehicle Analysis 

Lessons Learned 

Some of our top lessons from the hardware were from the durability standards of some of the 
components previously on the robot. The battery holder was made of a cheap material and not reinforced. 
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During travel, the robot was transported with the battery inside, destroying the battery holder and 
crushing a few components. Additionally, we had one of our main power distributors, the Rigrunner, held 
in place vertically with tension of 4 screws, this force eventually cracked the panel, and we redesigned the 
layout to be more optimized for the task. Additionally, the LiDAR holder was printed in a different 
orientation, so any tangential forces do not shear the layers apart.  

Some integration lessons learned are that it is hard to standardize all our computers to the same 
operating system. Nvidia Jetsons require specific Nvidia operating systems, which limits the version of 
Ubuntu and ROS2 consequently. Additionally, the Raspberry Pi disincentivizes users from installing 
desktop versions of older operating systems, meaning that we had to install the server version, then install 
the desktop version which took a non-trivial amount of time to figure out.  

Additionally, we face lessons from running real hardware. GPS signals can be noisy and images 
from cameras are dependent on light conditions. Simulation conditions are much easier to control and 
many of the sensors operate perfectly. We are still working on resolving these issues with sensor fusion 
and calibration. 

Top Hardware Failures 

Some of the top hardware failures we could encounter would be the cameras shifting their 
position. We are currently developing a way to hold them in place. If a camera shifts, its calibration will 
be disturbed which can make the sensor data for mapping the environment unreliable.  

Additionally, the mechanical connections of the wires could come apart. Such an issue can cause 
devices to power off or in the worse case scenario, wires can short to unwanted connections and cause 
hardware to become damaged and inoperable. To prevent this, we try to implement terminal 
connectors designed for screw terminals, we also rigorously test each connector we build by pulling on 
each wire with a force stronger than anticipated from regular use. We also organize and hold down 
wires with wire holders and zip ties to prevent wires from crossing or pulling.  

Software Testing and Control 

We track our todo items and bugs in a tracker on our Microsoft Teams channel. From there, 
members can pick their task and work towards completing it. These tasks are written to be as clear as 
possible with the tools required and a checklist of steps to take to achieve the task. We control the 
software changes through our central repository where members are free to make branches, but only 
the owners of the repo are allowed to approve of changes to the main branch. 

Virtual Environment 

We are using Gazebo to test our robot. We have a series of test worlds. We start with some 
baseline worlds with lines on the ground with patterns such as straight paths, curved paths, and circle 
paths. We then can add barrels, lines, or spots on the ground to mimic obstacle scenarios for the robot. 
Our robot’s geometry and sensors are defined with a URDF file (universal robotic description format) 
where we match to the real robot as closely as possible. In this virtual environment we have the robot 
detecting lines and barrels and plan to finalize the navigation as mentioned before. Below is an example 
of the robot on a set of lines. We also have models for traffic cones as well that we use for testing. 
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Physical Testing to Date 

Our physical testing has been limited as our main priority has been developing the simulation. 
The simulation allows us to safely test and develop NAV2 systems were deploying the real robot without 
verifying the work could cause us to damage the robot or face unwanted failures.  Currently the only 
issues we can foresee is that sensors may not publish as fast due to latency on the network. Further 
testing is required to determine if this is an issue as well as the severity of it.  

Initial Performance Assessments 
To date, we have the sensors and hardware complete. We have verified that all of the sensor data 

can publish across the network with ROS2 and is visible by all computers on and off the robot. Our 
performance assessments for navigation have been solely in simulation and plan to work on the real 
robot’s navigation in the following week. We will implement the waypoint following, speed control 
demonstration, and the lane/obstacle avoidance as required by the IGVC. We are confident in our ability 
to make the robot navigate for the IGVC this year. 


