
Marvin

Rocker Robotics Team President
Josiah Huntington | Josiah.Huntington@mines.sdsmt.edu

Rocker Robotics Team Advisor
Rohan Loveland | rohan.loveland@sdsmt.edu

Members

Autonomy & Controls Mechanical

Landon Lamoreaux † - Senior, CSC
Bennet Outland - Senior/Graduate, ME/CSC/CSE
Josiah Huntington - Senior, CENG
Michael Klingelhoefer - Junior, CSC
Devon Hamm - Frechman, CENG
Aden Muzzey - Freshman, CSC

Jacob Decker † - Sophomore, ME
Kaylee Herndon - Junior, ME
Heath Buer - Senior, ME/EE
Steven Duong - Junior, ME
Derek Matthies - Sophomore, ME
Ethan Miller- Sophomore, ME
Sam Ryckman - Graduate, ME/CSC/CSE*
Zane Wilson - Sophomore, ME
Daron Graf - Freshman, ME

Electrical

Alexis Englund † - Sophomore, CENG
Chase Reinertson - Senior, EE
Sierra Rodewald - Junior, EE

† Team Lead

CENG: B.S. Computer Engineering | CSC: B.S. Computer Science | CSE*: M.S. Computer Science and Engineering | EE: B.S.
Electrical Engineering | EE*: M.S. Electrical Engineering | ME: B.S. Mechanical Engineering

List of member email addresses: landon.lamoreaux@mines.sdsmt.edu, bennet.outland@mines.sdsmt.edu,,
alexis.englund@mines.sdsmt.edu, josiah.huntington@mines.sdsmt.edu, michael.klingelhoefer@mines.sdsmt.edu,
devon.hamm@mines.sdsmt.edu, aden.muzzey@mines.sdsmt.edu, jacob.decker@mines.sdsmt.edu,
kaylee.herndon@mines.sdsmt.edu, heath.buer@mines.sdsmt.edu, steven.duong@mines.sdsmt.edu,
derek.matthies@mines.sdsmt.edu, ethan.miller@mines.sdsmt.edu, samuel.ryckman@mines.sdsmt.edu,
zane.wilson@mines.sdsmt.edu, daron.graf@mines.sdsmt.edu, chase.reinertson@mines.sdsmt.edu,
sierra.rodewald@mines.sdsmt.edu.





Rocker Robotics –Marvin

Contents

Team Introduction 1

Summary 1

Acknowledgements 1

Design Assumptions and Process 2
Mechanical 2

Autonomy and Controls 2

Electrical 2

Innovations 3

Mechanical 3
Overview 3

Frame 3

Steering 4

Outer Shell 5

Electrical 6

Computers 6

Sensors 7

Motors 7

Power Connections 7

Autonomy and Controls 8

Paradigm 8

LIDAR 8

Obstacle Detection & Map Generation 9

State Estimation 9

Path Planning 10

Robot Control 11

Simulation 12

Potential Failure Points 12

Predicted Performance 13

Cost Breakdown 14

References 15

3



Rocker Robotics –Marvin

Team Introduction

Rocker Robotics is an extracurricular robotics team from the South Dakota School of Mines
and Technology. The goal of the team is to teach robotics concepts to its members, bring
robotics and STEM outreach to our community, and compete in a robotics competition each
year. Its members have a range of robotics experience, majors, and backgrounds. Josiah
Huntington is the president, Landon Lameroux is the autonomy and controls team lead,
Jacob Decker is the mechanical team lead, and Alexis Englund is the electrical team lead.

Summary

Our robot is named Marvin. It uses a limited-swerve drive system. Across all members of the
team, we spent approximately 5600 person-hours on this project. We are using computer
vision to identify the white-lane lines and potholes. LIDAR and ultrasonic sensors are used
to identify 3D barriers in our path, and a Global Positioning System (GPS) to estimate our
location on the course. We create a map of obstacles that we see in the world and then use
the A* (A-star) path planning algorithm to create a path that avoids all these obstacles.

The processing is split between an Nvidia Jetson Orin Nano and a Raspberry Pi Pico
microcontroller. LIDAR, computer vision, and path planning are all handled by the Jetson,
while the simpler sensors are connected to the Raspberry Pi Pico via a custom printed
circuit board (PCB). The E-stop is an isolated board that controls the state of a relay that can
interrupt the power connection to our motor controllers. This relay can be actuated either
by the E-stop button on the robot or the button on either remote using a wireless
connection. The robot is capable of four-wheel drive using four NEO brushless DC motors
and two brushed motors for steering. A standard Ackerman steering is used, the same
format found in most cars. With the added functionality of the left and right front wheels
able to turn independently of each other. The design also included the development of a
frame to support the steering mechanism and the outer shell of the robot.

Acknowledgments

We would like to thank Dr. Rohan Loveland, our advisor, for all his help throughout this year.
We would also like to thank the South Dakota School of Mines and Technology and the
Electrical Engineering, Computer Engineering, and Computer Science (EECS) Department
for providing us with funding and lab space in which to design, build, and test our robot.
Additionally, we thank the team’s umbrella organization, South Dakota Mines CAMP, for
helping us with leadership training and team administration. For assisting in design
reviews, we would like to thank Dr. Rohan Loveland, Dr. Larry Simonson, Dr. Thomas
Montoya, Dr. Jason Ash, Dr. Ryan Koontz, Ms. Amy DiReinzo, Mr. Lowell Kolb, and Mr. Pratik
Sinai Kunkolienker.

1



Rocker Robotics –Marvin

Design Assumptions and Process

Design assumptions for this robot began with its size. The robot must fit within the
constraints set by the competition rules [1]. Past this, we targeted a few major design
features: the robot should be car-like, have a turning radius significantly tighter than the
tightest turn described in the rules, be relatively robust, and not be so tightly integrated that
it’s difficult to build and maintain. The team placed a large emphasis on working around
materials already available in their lab. Notable parts of the robot that are in line with this
include the LIDAR, most of the frame, and the wheels and tires.

Mechanical
At the beginning of the school year, our decision-making was guided by decision matrices.
After working through multiple group discussions based on these tools, we settled on the
final architecture for the robot: a rigid chassis with a central pivot, limited-swerve steering,
independently driven wheels, and a body in the style of a small van. We started with an
existing chassis for testing and later designed a final chassis using aluminum T-slot
extrusion and waterjetted aluminum plates.

Autonomy and Controls
As for sensors, computers, and software stacks, much of the decision-making was based on
what the members of the Autonomy and Controls subteam were already comfortable with.
This led to us using an Nvidia Jetson Nano running ROS2 [2] on Ubuntu Linux, and the
Arduino framework on our Raspberry Pi Pico microcontroller. Sensor choices were guided
by considering what a typical autonomous car might have, leading us to use a combination
of a LIDAR, stereo cameras, a GPS, and an IMU.

Electrical
The primary goal for the electrical team this year was to expand on the boards completed in
the previous year. We spent time this semester improving on the designs and redesigning
the boards. Most of the electronics in the robot have been converted to printed circuit
boards (PCB) utilizing SMD/THT components on our boards.

2



Rocker Robotics –Marvin

Innovations

As a team, we aimed to innovate in the areas of computer science, electrical engineering,
and mechanical engineering. Some of the software innovations presented in this project
include sensor processing methods and a novel waypointing method. We created a novel
algorithm for detecting lane lines and converting them into an obstacle point cloud in three
dimensions. The line-obstacle data is then used to generate a valid driving region for the
robot. From this point, a ray is cast through the objects, and the optimal target waypoint is
determined after filtering. Both of these methods will be further explained in the Autonomy
and Controls section of the report.

In terms of electrical engineering, we designed a printed circuit board to handle the
interface between sensors and our computers. Additionally, we developed our E-stop board
and software, so we can safely stop the robot from a distance in accordance with the
competition rules. The E-stop board allows us to disconnect the motors from the battery
power while always keeping power to the other electronics to avoid potential filesystem
corruption if our computers were to lose power. The E-stop board is electrically isolated
from the power of the rest of the robot. It uses 915 MHz radio modules that allow for
two-way communication with multiple remotes to allow for multiple ways to turn the robot
off if needed.

On the mechanical side, the steering architecture chosen is a four-wheel drive system, using
a restricted swerve module drive for steering. The main benefit of this drive system is that
the robot can execute tight turns at a low complexity. The steering and drive systems are
attached to an aluminum frame split by a center pivot point, which helps to support all
mechanical and electrical components used within this design and maintain ground contact
for all four wheels. To provide both water resistance to electronic components and further
our robot’s car-like appearance, a wood shell was created to rest on top of the chassis.

Mechanical

Overview
For this project the mechanical subteam was responsible for the prototyping, designing, and
manufacturing of the chassis and related components; including several subsystems such as
the frame, drivetrain, and outer shell. The key idea we applied to our decisions was
simplicity; we created a list of the features we wanted to improve from our previous design
and brainstormed ways to achieve these features without adding unnecessary complications
to our designs. The desire for simplicity became a driving factor in all of our
decision-making processes.

Frame
The key improvement we made to the frame was the addition of a center pivot point. A
failure point in our design last year was a warp in our frame which lifted a wheel off the
ground, propagating a further chain of component strength failures. To avoid that, we
decided to build the frame around a center pivot point which would ensure all four wheels
would maintain ground contact. As seen in Figure (1) below, the 1.5” diameter steel rod acts

3



Rocker Robotics –Marvin

as our pivot axis. The front end of the robot with the steering elements affixes the rod, while
the back end has an inset pair of bearings that smooths the rotation. An important note to
mention at this point is that all of the components in this section have been designed with a
considerable factor of safety to ensure that this section does not become another failure
point. Building from that, the rest of the backbone of the frame consists of a spine of 3” x 1
½” T-slot with a 1 ½” x 1 ½” aluminum T-slot mounted perpendicular to the spine at each
end of this center beam as can be seen in Figure (1). This creates a proper support structure
for all electronic components and the payload and adds attachment points for drivetrain
components. Aluminum plates and brackets are used throughout the frame to strengthen
and increase rigidity in the chassis, as these create cross braces within the frame. These
components are also used to aid in mounting the drivetrain systems and shell. The T-slot
material was chosen as it is strong and there was an abundance readily accessible to our
team. An interesting challenge to this iteration of the robot is its weight. Since these parts
were designed to be excessively strong, they are also fairly heavy. We have, however,
increased the torque of our driving motors (see below) and changed the materials of the
components that failed last year to compensate for a heavier frame.

Figure 1: CAD Model of the chassis

Steering
The most unique part of our robot is the steering system. Overall, we chose a setup very
similar to a modified Ackermann drivetrain involving a pair of steered wheels. During the
process of choosing a drivetrain style, we worked through multiple options looking for the
best mix of benefits and costs. In addition, we considered what we had learned from last
year with an inefficient chain-based design. The process led us back to using a system that
mimics Ackerman-style steering but uses a pair of independently driven, restricted swerve
modules. These modules use a steering motor to turn a bracket that holds the wheel and its
driving motor. Though these could technically act as swerve modules, the driving motor acts
as our limiting factor as its wires would get twisted if it were to make a full rotation. Instead,
we chose to limit the rotation to nearly 180 degrees, which provides a short turning radius
without the complexity of a full swerve module. We have both a physical limit and a
software-based limit to ensure these do not over-rotate.

4



Rocker Robotics –Marvin

We also decided that to halve the time it took to get the robot fully assembled and running
we would only equip the front wheels with turning capabilities. These fixed-back wheels
have minimal chances of failing, providing us with at least some direct propulsion in a
worst-case scenario. Though this removes the possibility of a zero-point turn, it simplified
our drivetrain and reduced the parts costs, and assembly complexity drastically without
sacrificing much of our turning radius. As an aside, this pattern also gives us a design that
mimics how full-size vehicles are driven, which we felt aligned with our goal of having a
car-like appearance.

(a) (b)

Figure 2: The two main steering assembly parts.

(a) Belt Assembly. (b)Driving Assembly

Outer Shell
The shell serves a variety of functions, including mounting points for various sensors, and
providing aesthetic appeal. The design of the shell is based on the Mystery Machine from
the iconic Scooby-Doo series, which was chosen due to the relative simplicity of the shell
shape. The manufacturing method of the shell includes utilizing both laser cutting and 3D
printing. The outer panels were made in separate wood pieces, while the brackets that hold
them are made using Polylactic Acid (PLA). There is also a small frame made using an
extruded aluminum t-slot, which helps to support the weight of the sensors that are placed
on top. The shell also provides some weather resistance, this is aided by a commercially
sourced electronics box, which provides further water resistance.

5



Rocker Robotics –Marvin

(a) (b)

Figure 3: (a) Example of the Mystery Machine that the design was based on. (b) “Shell” of
the robot, along with other shell components.

Electrical

Computers
The intensive processing is primarily done on a Nvidia Jetson Orin Nano including image
processing and path planning calculations. It also deals with LIDAR and camera data taking
in and sending commands to the Logic Board which houses a Raspberry Pi Pico as the
on-board computer. The Logic Board handles processing for less intensive systems, such as
the Inertial Measurement Unit (IMU) and GPS to off load from the Orin. As well as providing
broken out debugger pins and plenty of 5V GPIO pins for any needed use. This board also
contains an integrated controller area network (CAN) module to connect to our motor
controllers. The Orin is powered from a 19V power supply and the Logic Board is powered
from a 5V power supply, both supplies are connected directly to the battery.

Figure 4: Logic Board

6



Rocker Robotics –Marvin

Sensors
Primary object detection is performed by a Hokuyo UTM-30LX LIDAR sensor. This unit has a
field of view of 270 degrees with a detection range of 0.1m to 30m. Line and pothole
detection is performed by a pair of Intel RealSense Depth Camera D435s. These will be used
to identify and locate the lines and potholes of the track. Additional location information
will be obtained from an Adafruit Ultimate GPS. A BNO055 inertial measurement unit (IMU)
will be used to determine the orientation of the vehicle. Ultrasonic sensors are also placed at
the front of the robot to serve as emergency obstacle avoidance sensors in case the robot
gets too close to an object that was missed by the LIDAR.

Motors
We are using 4 Neo brushless DC motors as the main drive system. These motors were
chosen in part because they are very powerful for their price. Marvin’s steering is achieved
using two brushed DC motors. There is a Spark Max motor controller for each of the
motors. The Spark Max motor controllers have built-in voltage regulation for the motors, as
well as compatibility with CAN for easy communication. These motor controllers are also
rated for continuous currents of up to 60A, which is a much higher current than we expect
to see.

Power Connections
Our robot uses a 4-cell, 20Ah LiPo battery to supply approximately 14.8V power to the
motor controllers. The connection between this battery and the motor controllers is set up
so that it can be interrupted by a relay for the emergency stop system, as detailed in the
E-Stop subsection. A second smaller 4-cell LiPo battery will provide power to the sensors
and electronics. This battery will have direct connections to our LIDAR, beacons, 19V power
supply, and motor controllers. The beacon state is controlled by the E-Stop to account for
the current state of the robot. We have also designed a custom led light driver board to
handle a more visual representation of the robot state. The colors will change depending on
the state the robot is currently in with each color code depending on the input from various
other boards. We are using an off-the-shelf DC Buck Boost Module to set the voltage from
the battery for the Nvidia Jetson. The Logic Board routes power to our remaining sensors
and provides communication connections to the electronics not directly connected to our
more powerful computers.

E-Stop
As required by the rules for this competition, we have designed an emergency stop system
for the robot. This system is an isolated circuit from the rest of the electronics. It is based on
a dual-purpose custom PCB that, depending on configuration, can be used either as a
transmitter or receiver. There is a solder jumper on the back to dictate the board
configuration. The receiver configuration will be located on the robot itself and will be
controlling the state of a relay that connects our motors and motor controllers to the
battery. This battery connection is separate from the battery connection to our main
computers and sensors, allowing us to kill power to all of the drive systems while keeping
power to the electronics that would be more sensitive to sudden power loss as data is being
transferred. The receiver board will open the relay contacts if either the E-stop button

7



Rocker Robotics –Marvin

onboard the robot is pressed, or it receives a command from the remote E-stop. The remote
E-stop board uses the same PCB in the transmit configuration, which will communicate with
the receiver board using LoRa RFM69HCW packet radio modules. Pressing the E-stop
button on the remote sends a status update to the receiver board which will then open the
relay contacts the same way that the E-stop button on the robot does. Both the transmitter
and receiver are also constantly sending keep alive pings to blink a light on both boards.
This ensures that the boards are communicating and gives a visual to double check
communications are still alive.

Figure 5: E-Stop Boards

Autonomy and Controls

Paradigm
This year, our robot’s autonomy and control uses the same concepts as last year, but with
further testing and reworking to ensure robustness. It is based on the concept of treating all
course obstacles (line, barrels, potholes, etc) identically. This allows for a simple, robust,
and general framework for navigating through the course. In cases where there are not any
lines, the obstacles will still be considered while the GPS coordinates act as waypoints to
guide the robot. This allows for standardization of the outputs from all obstacle-related
sensors. All of the sensor interfacing and communication will be done through ROS2 [2].

LIDAR

Marvin uses a 2D LIDAR unit to detect the location of obstacles in relation to the robot. It is
positioned to be high enough to avoid detecting the ramp, but low enough to detect any of
the course barrels. It then sends these obstacle locations to the map generation algorithm
as described below.

8



Rocker Robotics –Marvin

Obstacle Detection &Map Generation

The robot uses two Intel Realsense D435 cameras for lane following and pothole avoidance.
These cameras provide both an RGB stream and a depth stream. Both streams are read in
and aligned to each other. Figure 3 shows the algorithm used to convert the color image into
a point cloud that can be used by the path planning algorithm. The color image is converted
into a grayscale image and then adaptive thresholding is used to find where any white lines
are by looking at each pixel and its neighbors to see if they are significantly different, if they
are, it is assumed to be a white line, and is kept in the image. The image is then eroded to
remove any noise and the top half is masked out to reduce the sample complexity since the
ground is where the obstacles are. The resulting image contains lane lines and any potholes.
Combining this with the depth image allows us to create a point cloud of all the points that
need to be avoided. This algorithm is repeated for the second camera. The two-point clouds
are then transformed to be in the global coordinate frame. These point clouds are combined
with the point cloud from the LIDAR to create one point cloud of all the obstacles. All these
points are mapped to an image to create a picture of everything around the robot. The path
planning algorithm uses this point cloud to navigate around the course.

Figure 6: This is a visualization of each of the image manipulation stages discussed. The depth image
here only contains the points from the eroded masked image.

State Estimation

An important aspect of many of these sub-algorithms is knowing the location of the robot.
To accomplish this we are using an Extended Kalman Filter (EKF) for state sensor fusion. An
EKF is derived from the optimal, Gaussian, linear state filter, a Kalman filter, where the
linear filter is used to approximate nonlinear behavior for small timesteps. Given
estimations of the state and the expected error of the sensors used, a robust approximation
of the actual state can be determined.

9



Rocker Robotics –Marvin

To determine the robot’s location a combination of a GPS and a 9-axis IMU are used. We are
using a Bosch Sensortec BNO055 IMU, which nicely calculates an absolute orientation
estimate. With the data from these sensors, we can get accurate estimates of the actual
position and heading of the robot.

Path Planning

Using our state estimation, we can determine where the obstacles are in relation to the
robot. We then start determining what path the robot will need to take to traverse the
course. To determine the optimal path, three different elements must be determined. First,
the sub-state must be found that describes where the robot can and cannot be. Second, the
target waypoint that the robot travels towards is set. Lastly, the path to move between the
current robot state and the target waypoint is determined. Each of these can be considered
individually.

To determine where the robot is allowed to drive, we look at the local state and find all
obstacles that are within a set radius from the robot. This is done so we may focus only on
the obstacles that will have a relevant impact on the direction of the robot. From this point,
we take the local state that has been created and compress it to a smaller state represented
by a gridspace to save on computational expense. With this gridspace defined, we𝑛 × 𝑛
have a loose collection of obstacles spread throughout as seen in Figure (5a). Issues can
arise with the invariability of sensor noise, resulting in obstacles not being detected or
spuriously detected. To counter this, we can apply a dilation kernel to fill in any gaps where
obstacles should have been detected. If there were any small areas of spuriously identified
obstacles, an erosion kernel can remove the extraneous obstacles. Ultimately, we are then
left with a cleaned region with the dilated obstacles being returned to their original size.
The results of applying the two kernels can be seen in Figure (5b). Under the assumption
that the robot is currently between the lines, we apply a flood fill algorithm to define the
region between the lines where the robot is allowed to traverse. This can be seen in Figure
(5c). This was accomplished using the OpenCV library [3].

(a) (b) (c)

Figure 7: Different steps in the processing of the algorithm to determine the driveable
region. (a) Raw obstacle data from sensors. (b) Obstacle representation after dilation and

erosion. (c ) Drivable region determined post-floodfill.

10



Rocker Robotics –Marvin

Given that a traversable region is defined, we can start locating a waypoint for the robot to
navigate towards. To accomplish this, we use a “T-beam” with a fixed-width web and flange
where the size of the flange is much greater than the size of the web. This is done through
the following:

● Let F be the set of points from some (-l, 0) to (l, 0) varying the x component
● Collect the current orientation of the robot, θ
● Rotate flange by θ + π

2
● Shift the central point in the flange to the robot through additive broadcasting
● Calculate the location of the end of the web using the given distance and the current

orientation of the robot
● Shift the central point in F to the tip of the web through additive broadcasting

From this point, we want to determine a target point that is not near obstacles and would
not result in needing to take sharp turns unnecessarily. To do this, we apply a Gaussian filter
to the grid elements along the flange to smoothen the discontinuous steps between obstacle
and non-obstacle regions. This results in a set of hills and valleys where the hills represent
the favorable drivable regions since they are devoid of obstacles while adding a buffering
region near the obstacles. To mitigate sharp turning, a bandpass-like filter is applied that
increases the favorability of smaller turns, and outside the central region is subjected to a
decrementing linear trend. A linear search algorithm is then used to determine the
maximum along the now-filtered flange elements. Through this process, we can extract a
better target point by taking into account the local obstacles and the turning angle.

With a target point defined, we can define the starting position to be the currently estimated
state of the robot. To plan a path between the starting and target waypoint, we use A* due to
its superior performance in terms of its percent optimal performance per calculation time
[4]. We create the grid space so that the driveable areas have minimal weights to move
between nodes while non-traversable areas have high node weights. We extract a path from
the A* algorithm created for the smaller grid space. The path is now transformed𝑛 × 𝑛
from the compressed gridspace to the local region. While this does cause some
discretization error the error is negligible due to the small regions considered versus the
size of the compressed grid. As we step through the path, we can determine the steering
angles needed.

Robot Control

The control of the robot can be separated into three main categories: steering, desired
velocity, and stopping. To steer the robot, a target is read from the path planning algorithm.
Steering motors are then turned and the real angle is read by potentiometers connected to
the front wheels. A PID loop is then set to maintain the desired angle. The desired velocity is
likewise read in from the path planning algorithm according to the density of objects in the
local region. It is then read back by encoders on all the drive motors and each is set
according to an Ackerman style kinematic model. We also explored different methodologies
for developing a remote E-stop. We are currently using an RFM69_HCW and Raspberry Pi
Pico for sending and receiving E-stop commands.

11



Rocker Robotics –Marvin

Simulation

We used both physical and software simulation environments to validate our algorithms.
Specifically, in the cases of the GPS, orientation sensors, and depth cameras, physical
simulation environments were created for real-world validation. In the case of path
planning and state estimation, we used an in-house simulator that was developed to be
lightweight and versatile. A sample output can be seen in Figure (6). Through both of these
environments, we were able to test and validate the algorithms created for this project.

Figure 8: Example figure from the simulator used demonstrating the robot consistently
traversing the course by the placement of internal waypoints. These waypoints have been
connected to demonstrate the path, but the A* generated path will ultimately be used. Note

that the blue dots are simulated GPS waypoints.

Potential Failure Points

There is a potential for failure points in the autonomy, electrical, and mechanical systems. In
terms of autonomy, the computer vision system always has the possibility of identifying the
lines improperly. Changing lighting conditions throughout the run and shadows over the
line could cause our robot to not see some of the lines. Autotuning to the lighting conditions
has been implemented, but rapid changes may cause a momentary loss of obstacle data
from the camera.

In the electrical system, the main two points of failure are vibrations and water entrance.
Due to the lack of a suspension and the slightly bumpy terrain, frequent vibrations are
expected. Vibration of the wires over a long period may slowly disconnect various
connectors. To combat this, electrical connections are all either soldered in place or
attached by snug connectors. The robot is not designed to be waterproof, but rather simply
water resistant. An excessive amount of water on the robot may cause some water damage

12



Rocker Robotics –Marvin

and might cause shorts. This has been mitigated, but cannot be guaranteed to be perfect.
Should either of these cases occur, spare components and connections will be brought along
to the competition. Tape may also be used to provide additional temporary sealing for
problem areas. One of the other areas for concern is that radio frequency (RF) components
tend to be very sensitive. To combat potential for powering our RF circuitry without
antennas we designed them to utilize SMA connectors so antennas are more securely
connected. These antennas will not easily come loose from vibrations or other outside
factors. They however could still be a failure point if someone were to take the antenna off,
then power on the radio. Further, one of our other main intentions is to keep board costs
low and as the specific risk is low we have not included reverse polarity protection on our
boards in the form of protection diodes. We instead utilized XT30 connectors which are
directional and will help prevent reverse polarity on our Logic Board. Our E-Stop boards are
fitted with a battery connector that is also directionally connected with an interlocking JST
connector. Though, this does not stop someone from accidentally entering the battery into
the E-Stop incorrectly via the contact strips. We have included symbols which are
directional to help combat this.

In the mechanical subsystem, there are a few points of failure that could occur. One possible
failure point for the chassis is at the wheels and axles. As the entire weight of the robot rests
on the two components, there is a chance that either of them could break if the robot is
overloaded, or the shafts for the wheel assemblies could bend. To work around this, we
used aluminum and 3D-printed parts to help reduce the overall weight of the chassis and
distributed weight thoughtfully throughout the chassis, allowing each wheel to receive less
of the load. Repeated sharp steering angles will increase the stress through the steering
mechanism which may cause failure if used for long periods. We resolve this issue through
our control of the system by disincentivizing sharp steering angles when the path that the
robot takes is planned. Another concern is vibrations in the robot loosening bolts, to
prevent this a thread locking compound and lock nuts were used to keep bolts tight and in
place along with personal checking components between runs. Design reviews were also
conducted with advice from faculty to ensure a robust design in the more critical sections of
the robot.

Predicted Performance

We predict that we will be able to perform better than we did in the previous year. As this is
the second iteration of this robot, we have improved several of the components. However,
there are still several areas that we may be able to improve on from this iteration of the
robot. Our robot is predicted to be able to identify obstacles reasonably well and be able to
create a path that avoids all of the identified obstacles. In simulation, the robot has been
able to successfully traverse the course. Based on worst-case power consumption, we
expect the robot’s battery life to be at least two hours. Based on how far down the drive
motors are, this robot should be able to climb the ramp with no issues. Lane lines will be
detected five to ten feet ahead of the robot. Obstacles detected by the LIDAR will be seen at
20 to 30 feet away from the robot.

13



Rocker Robotics –Marvin

Cost Breakdown

Product Name Unit Cost Quantity Used

Hokuyo UTM-30LX LIDAR* $4,675 1

Intel Realsense D435* $314 2

Nvidia Jetson Orin Nano $500 1

Turnigy 20000mAh Battery* $142 1

Rev Robotics Spark Max* $90 6

Grantury Junction Box* $63.49 1

6061 Aluminum U Channel - 3ft $42.64 1

Rev Robotics Ultra 90° Gearbox $42 4

McMaster-Carr Metal Gear Rack $41.61 2

Raspberry Pi Pico* $4 4

Rev Robotics NEO DC motor $48 4

MGN12H 300mm Linear Rail $28 2

1kg 3D Printed Material $25 4

Rev Robotics 5mm Hex Shaft, 400mm length $21.50 2

3 JSN-SR04T Ultrasonic Distance Sensor* $20 2

QCQIANG E-Stop Button* $18.29 1

McMaster-Carr Metal Gear 20° angle $13.68 2

Rev Robotics UltraPlanetary Cartridge 4:1 $11.50 12

10” Pneumatic Tire and Wheel* $8.49 4

Rev Robotics 5mm Hex Bearing Block $4 4

1.5” x 3” T-Slot Extrusion - Cost is Per Inch* $1.02 33

1.5” x 1.5” T-Slot Extrusion - Cost is Per Inch* $0.57 96

2’ x 2’ x ¼” Wooden Panels $8.99 12

Total Cost: $7307.22

* Denotes items the team had on hand and did not need to purchase

14



Rocker Robotics –Marvin

References

[1] IGVC. (2022, October). The 30th Annual Intelligent Ground Vehicle Competition (IGVC)
Self-Drive.

[2] Stanford Artificial Intelligence Laboratory et al. (2018). Robotic Operating System.
Retrieved from https://www.ros.org

[3] Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.

[4] Fareh, R., Baziyad, M., Rahman, M., Rabie, T., & Bettayeb, M. (2020). Investigating Reduced
Path Planning Strategy for Differential Wheeled Mobile Robot. Robotica, 38(2), 235-255.
doi:10.1017/S0263574719000572

15


	IGVC_Report
	fdd7164580259680690f2c0f1807e8935c0c100746e73dc05b7c474cdd59705f.pdf
	IGVC_Report

