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1 Introduction

1.1 Team Introduction

Rutgers IEEE is a large club at Rutgers University that contains many individual
divisions that focus on many different subjects. We represent the IGVC division where
our sole focus is this yearly competition. We believe our participation in this competition
will bring an opportunity for many of our robotics members to dive into more advanced
robotics and learn robotics techniques that are closely affiliated with industry level
practices (i.e: CADing, simulation testing with Gazebo, ROS, and much more). Rutgers
University competed in IGVC previously in 2011, 2012, and 2022. We hope that
continuing our growth will fill a niche in robotics opportunities at the university that was
previously unfilled.

1.2 Organization

The Rutgers IEEE team consists of three teams corresponding to the disciplines of
IGVC: mechanical, electronics and software. Each team has one lead who is in charge
of organizing tasks for the meetings and making sure everything is ready before the
deadline. Every member of each team always had a task to complete and the team
overall put in many hours working on the Going Merry. The table below shows the role
of each member in each of the teams.

Team Organization

Member Name Position Major Year

Adam Modzelewski Mechanical Lead
Mechanical Engineering

2026

Chinmay Mosur Mechanical 2026

Ronan John Electronics Lead

Electrical Engineering

2024

Chance Reyes 2027
Electronics

Pavan Reddy 2026

Zuhayr Rashid Software Lead Computer Science 2026

Krishaan Chaudhary

Software Computer Science

2026

Akilan Manivannan 2026

Krithish Ayyappan 2026

Anirudha Abhang 2026

Ribhu Pradhan 2027

Navya Terapalli Computer Engineering 2026
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1.3 Design Methodology

The design process for this year started with a lot of research into both prior teams
and of last year's robot. Due to unfortunate circumstances, we were not able to compete
last year and also no longer had our bot from 2022. Between not having attended the
competition, not having a robot, and most of our experienced members graduating, we
had to start from scratch spending a lot of time compiling the products and methods of
the previous year and other teams. From here, each subteam broke out to begin
designing models or schematics for their respective system, and began to buy parts to
start prototyping them.

The mechanical sub-team wanted the Going Merry to be as rigid, robust, simple and
durable for the stresses it would endure throughout its course and the load it would
need to carry throughout the duration. With this in mind the sub-team needed to follow a
simple process of brainstorming, researching, designing, testing, iterating, and
repeating until we were happy with its performance. With our sub-team being only two
sophomore’s we focused on learning CAD skills and ensuring that our bot would meet
the specification requirements.

The electronics sub-team wanted to focus on building a simple and robust electrical
system that could be constructed modularly. While the design was still being iterated
upon, we wanted to make sure that any components we wanted to use would be
compatible with the rest of the system. Additionally, the system was designed with a
clear path of iterations and improvements in the future, using modules now that could
be integrated onto custom circuit boards in the future. Overall, the design process
revolved around identifying components and functionality that we need on the vehicle,
and making sure the system could support it.

The software sub-team spent most of its design time prototyping algorithms inside
Gazebo and simulating what we could. Because the entire software team was made up
of sophomores and freshmen, we spent much of the year learning about and
implementing different industry standard mapping and planning algorithms we could use
for this challenge. This experience helped us decide which of those would work well for
the bot, as well as speed up the process of applying them to the physical robot.

2 Mechanical

When generating a design for the Going Merry, it was essential to follow the design
process highlighted in the intro with our goals guiding our considerations. Our goals
prioritized designs that were as rigid and resilient as possible yet still be simple, with the
ability to handle the stresses of the course and the loads we applied while still being a
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robust solution for the other sub-teams. With this in mind, we used CAD programs like
Fusion 360 and Solidworks to model our design and perform static simulations to
reiterate and improve as many weak points as possible.

2.1 Housing Design

Figure 1: CAD of Going Merry’s Housing
The Going Merry’s housing needed to contain the electronics bay, the payload bank,

our battery compartment, and the on-board computer. A rectangular design was utilized
for ease of housing components. A failure of the bot from 2022 was its inability to clear
the ramp. Its design with one caster wheel up front and one in the back caused the
motor mounted wheels to not have traction with the ground. This was taken into account
in our design by only including the caster wheels in the front of the vehicle. The very
front of the vehicle is also angled upwards at 45 degrees in order to ensure no clipping
with the ramp. The area was originally intended for any additional electronics however it
can double as a location for the payload if need be. Once we had decided on the shape
of the Going Merry, it was simply dividing the space so that each of the compartments
was easily accessible, which we found that electronics could be easily housed in the
space above the wheels. Our next problem was figuring out the materials we would
build with. Through our iterations, we landed on using Silver Anodized Aluminum T-slot
extrusions. These extrusions allowed us to place more bracing where we needed to
reinforce the structure and hold the load the Going Merry needed to handle.

The Going Merry’s drive train uses two motors with planetary gears for additional
torque. Motors with chain links and sprockets in a five revolution input to 1 revolution
output ratio are directly connected to the tires to ensure we can move through the
course and handle the terrain it could encounter. As both motors mounted wheels are at
the rear, proper weight balance is required to ensure no vehicle tipping.

2.2 Suspension/Tensioning

Suspension in the Going Merry included spring-loaded caster wheels incorporated in
the front for passive suspension. While the vehicle traverses through different terrain,
the vehicle will pivot on the main 10.5-inch wheels. The two front spring-loaded caster
wheels will compress so that all wheels maintain traction during both uphill and downhill.
The main reason why suspension was not implemented on the main two wheels is that
the vehicle is moving at a low velocity, and thus any minor bumps or potholes will be
negligible. A failure of the previous bot was that the wheel mounts were bolted through
our T-slotted extrusions, this resulted in improper chain tensioning as they are tensioned
by removing or adding links. The chain being too loose would cause the bot to be
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unmovable while them being too tight resulted in bending in the bar where the motors
were mounted. To combat this we developed a system in which we are able to easily
adjust the position of our wheel mounts. A rectangular piece of metal was machined in
order to surround and slide across the T-slotted framing. The wheel mounts were then
screwed on top of this metal using T-nuts. This metal was then screwed into the
T-Slotted framing allowing us to loosen them at any point and adjust their distance along
the frame. This enabled us to fit the chain and then pull the wheels to maximize tension
without overloading the frame.

2.3 Weatherproofing

Weatherproofing is exceptionally critical to ensure none of our electronics get
damaged. The electronics bay was the main compartment that was weatherproofed as
it contained everything electronics related. The top polycarbonate acts as a roof for our
electronics compartments. This leaves our battery, which is located above this roof,
susceptible to water damage. A makeshift umbrella can be attached to our center axis
to protect it. This umbrella additionally protects our battery from the rain. The seams of
our polycarbonate setup were sealed with silicon and tested for leaks by using
compressed air on the outside and feeling for any breeze in the inside bay. Finally, for
the payload area, basic rust proof measures were established. In the case of inability to
attach an umbrella, a rain tarp cover was designed to cover the entire vehicle.

3 Electronics

The Going Merry is equipped with everything it needs to gather information about its
environment, process that information, and navigate through the environment. This
entails several sensors, computers capable of vision processing and path finding,
motors, and a way to power it all.

Figure 2: Power delivery on Going Merry
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3.1 Power Delivery System

Going Merry is powered by a 50 amp hour 24 volt LiFePO4 battery. 12v and 5v
voltage rails are regulated by buck boost converters to power all needed electronics on
the vehicle. Component voltages and the total current draw of the system are constantly
measured by an on-board pcb featuring an ACS770 for current sensing and an ESP32
module to handle the logic and to also function as the wireless E-Stop. This data is used
to get a measurement of the power being drawn from the system. After more data is
collected, we will be able to know the average current draws based on the state of the
vehicle. This will allow us to make accurate estimates of battery life. Initial estimates
place average current draw at 30 amps during normal operation. With the battery we
have, expect around 1.5 hours of operation before the battery voltage drops below
operable levels. The battery can be fully charged from mains power over the course of
2.5 hours.

Figure 3: Custom Wireless E-Stop & Current Sensing PCB

3.2 Communication

Most on-board communication is over USB. Wireless communication with the
vehicle is achieved using either Bluetooth or low power radio. The lower ranged
Bluetooth is used to control the vehicle directly with a controller, using any generic
game-pad protocol implementing BLE. Radio is used at ranges up to 400ft to activate
the E-Stop and periodically send diagnostic information to a base station if desired.
Radio communication happens over a separately powered ESP32 microcontroller.
Another identical microcontroller can be used to transmit E-Stop signals from a
distance.
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Figure 4: Communication on Going Merry

3.3 Electronics Suite

3.3.1 Motor and Motor Controller

The motor and motor controller used in Going Merry were chosen to fit the needs of
the vehicle. The motors used are two 24V brushless DC motors, geared down with a
ratio of 40:1. The gear reduction lowers speed, but allows us to use lower powered
motors that prolong battery life. Given that the vehicle should travel at no more than 5
mph, this is a worthwhile trade off. The ODrive motor controller was chosen because a
single unit can drive two motors, and because the ODrive can tolerate a wide range of
voltages. The ODrive also can monitor its input voltage and gather data from the
encoders on the motors.

Regular electric speed controllers were considered for the motor drivers, but were
not chosen due the inherent limitation that an ESC will have less control over the exact
position of the motor.

3.3.2 Computation

An Intel NUC is responsible for all computation on board the Going Merry. The NUC
was an easy choice for its strong specs, compact form factor, and wide range of
tolerable input voltages. The NUC communicates with a Jetson TX2 over Ethernet for
computationally intensive path finding tasks.

3.3.3 Sensors

Perception of the immediate environment is done with a Hokuyo UTM 30LX LIDAR,
and an Intel RealSense Depth Camera D435. The Intel Depth Camera is essential for
identifying the track that the vehicle must stay in, as well as the potholes on the track.
The camera can measure the distance of an object up to 10m away, but is also capable
of capturing images in color, making it easier to use computer vision to identify different
objects. The depth camera is complemented by the Hokyuo LIDAR, which has a 270
degree range of vision and can detect objects anywhere from 0.1m to 30m away. These
two sensors together will work to create a 3D representation of the vehicle's
environment in software, which we can then work to navigate through.

For navigating the course as a whole, we used a Pixhawk 4 module along with a
GPS for a reliable way to know our heading as well as absolute position on the track.
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This data will also be communicated to the computer system to contribute to the path
finding.

3.4 Safety Devices

The ESP32 microcontroller responsible for the wireless E-Stop is powered
independently of other components. The microcontroller can directly control a relay that
will disconnect the motor controller from any power. This design decision was made so
that the wireless E-Stop could be actuated regardless of the state of the rest of the
system. The physical E-Stop button is wired in line with the signal from the
microcontroller. Both the physical button and the wireless E-Stop must be active for any
power to be delivered to the motors. Additionally, the relay is normally open, so if the
microcontroller loses power for any reason, the motor will not run.

The same microcontroller controls warning LEDs that ensure any person near the
vehicle will know when it is powered on, or operating autonomously.

4 Software

The software stack that we decided to use to develop Going Merry is ROS (the
Robot Operating System). ROS is an operating system that provides tools and libraries
that can help develop robot applications. ROS provided an easy form of communication
between the robot and the software with the help of subscriber and publisher nodes.
ROS helped ease the use of a programming language to develop in because it supports
any language with the help of control interface and nodes. For the project we primarily
used Python because everyone in the team had knowledge in Python or could learn it
significantly faster.

For the hardware that we had to design the software, we were working with an Intel
NUC mini PC with an Intel i7-8665U and 32GB of RAM. We’ve also included a Jetson
TX2 for vision processing.

4.1 Obstacle Detection and Avoidance

Our object detection strategy combined two different approaches. The first used the
Hokuyo lidar to collect a laser scan of all raised objects on the field. Simultaneously, we
are using the Intel Realsense camera to collect RGB-D images of the field. We
threshold the image for the white lanes and potholes, and then generate a 3-D point
cloud in the reference frame of the robot of the detected lanes and potholes. These
point clouds are combined to create a 2-D occupancy grid of the environment. This
represents the places in the environment that are occupied and need to be avoided.
This occupancy map is used for the mapping stage

The second strategy employed used the deep-learning algorithm YOLOv3 (You Only
Look Once) for real-time object detection. The object detection algorithm utilizes a
convolutional neural network, Darknet, that we trained on a traffic barrel dataset to
correctly classify obstacles. We integrated Darknet with the Intel RealSense Depth
Camera D435 using OpenCV to generate live labels for objects in the environment. The
label information is then accessed by ROS to publish to the robot for navigation.

4.2 Mapping

The mapping subsystem for our robot utilizes the SLAM (Simultaneous Localization
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and Mapping) algorithm[1] [2]. SLAM takes in two inputs, the robot’s sensor
observations and its odometry observations, and attempts to generate a map of the
environment and the robots location in the map based on these inputs. The sensor
observation we are using for SLAM is the laser scan generated by our lidar. The
odometry estimate is generated using measurements from the motor encoders and the
onboard IMU, which are then put through an Extended Kalman Filter to reduce error.
With this, we are able to create a map for the environment that we are able to path plan
through.

4.3 Path Planning

Our robot incorporates two different path planners. The first planner, a global
planner, implements an A* planner over the entire occupancy map generated. This
planner is complete and optimal given that the generated map is accurate. The goal for
this is given by the GPS waypoints provided by the IGVC team. The second planner is a
local planner, which plans over a smaller region that is close to the robot. This planner
utilized the Dynamic Window Approach algorithm [3], which samples a number of
controls and generates a path from this series of controls. It then scores each sampled
path on criteria like distance to the goal, time, and the distance from obstacles. The
local planner runs more often than the global planner, but uses the global path as a goal
to plan towards. This approach provides a good balance of minimizing time complexity
while generating the most optimal paths possible.

5 Conclusion

5.1 Failure Points and Resolutions

Mechanical Failures

In terms of mechanical Failure of the vehicle, it can be separated into 3 different
elements.

• Normal Wear and Tear: In the case of normal wear, failure can occur after multiple
experiments and trials in which parts are not replaced quickly or forgotten about
such as the dirty wheels on laboratory floors, oil on bearings, and dirt and grass in
sprockets after an outdoor experiment. This will not cause a catastrophic failure as
it can be quickly fixed within the hour and oftentimes the vehicle remains
operational. Therefore, the resolution of this issue is frequent check up on the
vehicle on normal wear items.

• Structural failure: In the case of structural failure, extrusions may bend and screws
may become loose during testing and operation. This is a large failure point as if
this happens outside of a lab setting, it will be difficult to fix before the problem
occurs. To prevent such an issue, all screws that are on the motors, wheels, and
have constant vibrations have all been secured with loctite.. If there is a failure
point in which a screw does come loose, the nut and screw is replaced along with
a higher tolerant loctite.

• Misuse Failure: Finally, the biggest failure point of the mechanical design is misuse
such as carrying from none secured points on the frame. If the robot is not carried
using the main bars going across the entire frame, the connection between the
extrusions will experience tension and slowly bend outwards. Another problem is
the possibility of tilting. To avoid these failures we will ensure that every member
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knows the proper way to transport and carry the bot as well as the proper weight
distribution of the bot.

Electrical Failures

• Under-voltage Failure: The battery used to power the vehicle has a nonlinear
voltage curve that means the system must tolerate higher voltages at full charge,
and constantly decreasing voltages at lower charge. Higher voltages can be
regulated, but when the components begin to be supplied with too low of a
voltage, they may exhibit unexpected behavior. To prevent this, the battery voltage
must be monitored over time.

• Electromagnetic Interference Failure: During normal use, the wires from the battery
and motor may have current spikes that produce electromagnetic interference. For
the more sensitive lower voltage components on the vehicle, this introduces the
potential for data loss from interference. This is especially true for the GPS, which
is very sensitive to nearby current. To mitigate this issue, the lines that carry the
highest current are spaced out from sensitive components. EMF can be difficult to
entirely account for in the entire system, so components like the GPS must be
tested on the vehicle to make sure they function properly during normal use.

• Short Circuit Failure: If a component is connected incorrectly, or a structural fail ure
breaks a line, there is potential for a short circuit. This problem is especially
dangerous with a battery like we are using, that can supply hundreds or thousands
of amps for a short time. To mitigate the risk from this problem, many fuses are in
line with different components. The entire battery source is in line with a 100 amp
fuse that will prevent the worst case scenario, and several lower current fuses are
in line with smaller components to protect them.

Software Failure

• Mapping Failure: This can be caused by two primary issues, location drift and
sensor issues. Location drift occurs when our odometry begins to drift away from
our actual position in the world, which can cause path planning to fail
automatically. This is remediated by incorporating an extended kalman filter into
the odometry output, which helps reduce drift and error in the sensors. The SLAM
algorithm also ensures that our sensor observations match our expected position
in the world, while accounting for sensor observations.

• Path Planning Error: The path planner either produces an optimal path, or is unable
to find a path through the obstacles given. Assuming there are no mapping errors,
which could cause this, this is alleviated by tuning the parameters for our local
path planner to ensure that path’s it considers to be feasible match the capabilities
of the physical robot.

• Vision Errors: This could be caused by errors in our lane detection. Missing
potholes or lanes on the course could result in point deductions or disqualifications
for driving over them. Fixes for this included tuning our detection algorithm to be
more generous in its classification of lane pixels, and extensive testing.

5.2. Testing Chapter 5. Conclusion

5.2 Testing
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5.2.1 Simulations Employed

Simulations in Virtual Environment

Gazebo, a 3d robotics simulator, was vital in developing the software and testing the
robot in a similar environment. First, we set up the Going Merry details in urdf format
allowing for an accurate representation of the robot as if we were at the competition.
Once that was done, we set up the environment using a similar terrain as in previous
IGVC competitions and used randomization to place obstacles around the terrain to get
a sense of the accuracy of our object detection. Then to test other features of the Going
Merry, we set up a test environment in which we can test if the different sensors (the
lidar sensor, camera, etc) work and how they function with the robot. This enabled us to
get a better idea on where to place these parts on our final robot. Gazebo enabled us to
make sure the code was properly functional before deploying onto Going Merry for the
competition.

Simulations Concepts Tested

We tested many different scenarios in Gazebo to make sure everything is ready for
competition time. Some scenarios we tested were random simulation of environments,
sensor simulations, robot behaviors, and testing robotic kinematics. The first test,
randomization of the environment, tested our robot’s accuracy in any type of
environment. When we get to the field we will not know how it will be. So the primary
focus of this test is to create as many possibilities to the game day environment so the
robot won’t run into any hiccups. The second test, sensor simulations, we made a static
environment as simple as possible to just test the sensors. So using each sensor we
tested the different outputs and saw if they produced the outputs that were desired. The
third test, robot behavior testing, we tested the robot in one of the randomized worlds
and see if the movement was as desired. We wanted to see if mechanically, the parts
we put into the Going Merry are desirable or do we need to change anything. For the
final test, testing the robot kinematics, we wanted to see the performance based on
velocity and acceleration from the Going Merry. We wanted to see the maximum and
minimum values of acceleration and velocity we can get from the robot. It will be crucial
to see how fast we can get through the course.

5.3 Performance Estimates

5.3.1 Performance Testing to Date

The Going Merry was tested in an outside environment that is similar to the IGVC
competition. The white lines, the obstacles, and ramp were placed to provide an ideal
environment similar to the IGVC competition. We only went outdoors to test once we
were completed with housing all the components of Going Merry and all the parts were
intact.

Mechanically we validated the Going Merry upon final assembly, mounting all the
electronics, sensors, batteries, etc. In addition to the essential elements, we added a
mock payload. We visually inspected any points of failure like the bearings, sensor, and
camera tower and made sure that our electronics were not affected by the environment.

Electronically we validated the Going Merry by continuously testing components as they
were added to the system, and making sure everything was delivered with sufficient

power. The motors were tested to ensure they are powerful enough to move the load we
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must carry. In the software we validated the Going Merry by checking if the robot
performed similar to the simulations. If it wasn’t performing similar to the simulation then

we needed to adjust back in the simulation and retest outside.

5.3.2 Initial Performance Estimates
Max Speed 4.6 mph

Acceleration 3 mph/s

Reaction Time 25 to 250 ms

Battery Life 10 hours stand by and 4 hours during operation
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