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Introduction 
The University of Detroit Mercy Senior Design 2018 team is entering the competition with 

VERTIGO, a successor to Detroit Mercy’s 2017 design group’s robot Lancebot. VERTIGO sets 
itself apart from its successor through improved software suite and redesigned hardware 
components.  Modifications have been made to the prior mapping, IP, and goal selection 
algorithms. In addition, a new redistribution of hardware was made to support easy conversion 
between Tractor and Balanced modes of VERTIGO’s base chassis, Segway RMP 220-v3. The 
result is more precise localization, maps, and navigation goals. This report highlights the 
significance of our hardware and software systems that go into the creation of VERTIGO.  

Team Organization 
The 2018 IGVC team is composed of seven Electrical Engineering students and four Robotics 

and Mechatronics Students. In addition, four of the seven Electrical Engineering students have a 
concentration of computer engineering. These diverse areas of study allow for a very versatile and 
dynamic group with all the skills necessary to make VERTIGO a success. 

The work distribution focused on channeling students towards their strengths. Having 11 
members in the group gave the team flexibility with the number of people per module. A list of 
tasks was developed and broken down into modules, then team members were assigned to the tasks 
and Gantt charts were developed to organize team activities and track progress. The team met 
twice a week and reported progress though oral reports as well as documented logs on a web-based 
shared repository. The team facilitator managed the organization of the repository and insured 
proper submissions in timely manner. A team leader developed agendas for every meeting and 
reported with the facilitator to the team advisor. The team devoted approximately 12 hours a week 
for 20 weeks totaling 240 hours during the academic year in addition to 100 hours projected 
towards the end of the competition. Table 1 lists VERTIGO’s team members and their 
corresponding tasks.  

 
Table 1: Team Roles and Responsibilities 

Column1 Team Roles and Responsibilities Column2
Name Role Responsibilities

Christine Hillebrand Team Leader/ Technical Lead JAUS/ System Integration
Marcus Barnett Co-Lead / Facilitator E-Stop&Controller/Team Organization
Ted Chase Team Member IP/ Costmap Integration
Nayan Patel Team Member Gimbal/ Camera Hardware
Isaac Elicea Team Member JAUS/ NAV integration
John Slowik Team Member Odometry/ Gmapping
Ben Kendell Team Member UTM Transform/ Goal Planning MUX
Zach Arnold Team Member NAV/ Local Planning
John Belanger Volunteer Hardware
Anna Periyappurathu Team Member LiDAR/ Local Goal Planner
Joeseph Vega Team Member IMU/ GPS
Viken Yeranosian Team Member GPS/ IMU/ E-Stop Controller
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Cost Analysis 
The cost of VERTIGO is broken down in Table 2 with an approximate total of $44 K. 

  
Table 2: VERTIGO Cost Estimates (blank cells indicate donated items) 

 

Power Budget & Distribution 
VERTIGO has two independent power systems: the first is built into the Segway and operates 

the RMP 220 base platform (motors) and its corresponding built-in computer, and the second is 
added to the chassis to power all the custom added sensors and computers. 

The built-in Segway power system consists of three 72V, 380Wh batteries, two of which power 
the two Segway motors, and the third powers the onboard computer and motor controllers. The 
Segway reports a max range of 30 miles on a full charge, and a charging time of about 3 hours. 
These specs were sufficient to drive the vehicle for a full day under IGVC conditions and rendered 
no serious challenges to the team. 

The second added power system was designed around a quickly swappable 52V, 24A Panasonic 
GA 18560 battery. This battery provides 1300Wh when fully charged, which can operate 
VERTIGO’s 169W load for about 7.5 hours. With two batteries in-house and a charging time of 

Vertigo Team Costs Column1 Column2
Component Retail Unit Cost Team Cost 
Segway RMP 220 v3 Chassis 24,000.00$          24,000.00$ 
Caster Wheel for Tractor mode Capability 247.00$                247.00$       
Auxillary Batteries 729.00$                1,458.00$    
Battery Charger 55.00$                  55.00$          
Multisence S7 3D Camera 6,800.00$            6,800.00$    
Velodyne VLP-16 LiDAR Puck 8,000.00$            8,000.00$    
KVH CG-5100 IMU 15,000.00$          -$              
ProPak6 Triple-Frequency GNSS Receiver 22,070.00$          -$              
Sparton AHRS-8P IMU 1,425.00$            -$              
NUC Computer 1,100.00$            2,200.00$    
Mini Box intel Computers (3) 1,000.00$            -$              
Router 100.00$                -$              
Aluminum framing 400.00$                400.00$       
aluminum sheeting 384.00$                384.00$       
Shelving Unit 400.00$                -$              
E-Stop Controller 353.00$                353.00$       
Totals 82,063.00$          43,897.00$ 
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4.5 hours, VERTIGO can run for a full day with no power concerns, and a battery can be swapped 
and fully recharged before the replacement is exhausted.  

Panasonic recommends the batteries to be charged to 80% of full capacity to extend their 
lifetime. This will result in a charging time of three hours and an operation time of six hours per 
VERTIGO’s load. Again, this configuration is sufficient for IGVC conditions and provides plenty 
of recovery time in case there are gaps in charging. 

VERTIGO’s power budget was derived by summing the power consumption of all its accessory 
sensors and computing resources; it is presented in the Table 3. 

 
Table 3: VERTIGO Power Budget - Normal and Worst Case Operating Conditions 

Software Strategy 
The team is split up into four groups. The groups are as follows: JAUS, perception, localization, 

and navigation. The JAUS group worked separately from the group for most of the project. The 
JAUS module functions on its own without much reliance on the other functionality of VERTIGO. 
The perception group holds the responsibility of detecting obstacles and lane lines. As time went 
on, the perception group started working more closely with the navigation group to ensure that the 
robot does not cross lane lines and avoids obstacles. The localization group holds the responsibility 
of integrating the GPS, IMUs, and wheel odometry. Each data set is transformed into one 
coordinate system for uniformity, with Kalman filtering used for sensor fusion. The navigation 
group holds responsibility for the navigation stack. This consists of mapping, local and global path 
planning, as well as goal selection, which is an algorithm used to determine where the end point 
should be for the global path. Having been given some code from last year's team, the team's 
primary focus was on integration of perception, localization, and navigation. To achieve this goal, 
the three aforementioned groups were required to work closely together. 

POWER BUDGET
Normal Operating Conditions Worst Case Operating Conditions

Device Quantity Voltage (V) Current (A) Power (W) Voltage (V) Current (A) Power (W)
Velodyne LiDAR 1 12 1 12 18 1.75 31.5

Carnegie Multisense 
S7 1 24 0.3 7.2 24 0.8 19.2

DVDO G3-Pro Air 3C 
Pro 1 3 1 3 5 1 5

Netgear NightHawk 
X6 Wireless Router 1 12 0.55 6.6 12 1 12
Microstrain 3DM-

GX2 IMU 1 9 0.09 0.81 1 0.09 0.09
Spartan AHRS-8 
Digital Compass 1 5 0.064 0.32 5 0.064 0.32

Mini-Box Computer 2 12 2.5 30 12 3.75 45
Novatel Propak LB 

Plus GPS 1 12 0.31 3.72 12 0.4 4.8
Indicator LEDs 160 10 0.02 0.2 10 0.06 0.6
Wireless E-Stop 1 12 0.045 0.54 12 0.465 5.58

Total 5.879 64.39 9.379 124.09
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Robot Design 
VERTIGO is a Segway RMP 220 Chassis capable of a 200lb payload 

before modifications. The chassis is equipped with reinforced 
aluminum framing to support our various sensory equipment. The system 
is run with two Intel Mini-Box Computers using the Ubuntu based ROS 
platform to run the robot. VERTIGO uses a VLP-16 Velodyne LiDAR, and 
Multisense 3D Camera for lane line detection and obstacle avoidance. Two 
GNSS-502 Antennas are mounted on top of the vehicle and feed into the 
ProPak6 GNSS Receiver. The receiver works with the KVH IMU to give 
precise heading and global positioning.  
 

Mechanical Improvements 
The 2018 team changed some key components to the mechanical design 

from the 2017 team to make the robot more functional and efficient. The 
2017 design included a gimbal, which was configured to stabilize the 3D 
camera while in balance mode; the team decided to remove it and 
replace it by an aluminum frame. The gimbal was designed for use with 
film cameras, which would require some latency of turning. This conflicted 
with the usage on VERTIGO, skewing the data input of the lane lines. 
The aluminum frame gives VERTIGO a static camera configuration, 
simplifying data reception and analysis by comparison with the dynamic 
configuration of the gimbal.  

The team designed and welded a new shelving unit to house the IMU, batteries, and Intel Mini 
Box Computers. The new design makes the components easily accessible while providing more 
protection than the previous design. The shelving also creates a static location for the IMU, giving 
VERTIGO more accuracy in heading and positioning.  

Navigation 
VERTIGO’s software is built on Robot Operating System (ROS), which provides a variety of 

advantages. Most importantly, ROS is a peer-to-peer networking framework that allows efficient 
communication between software modules; these modules can be located on different computer 
platforms, which allows us to distribute computation tasks and increase system speed. ROS also 
comes equipped with software modules that can be configured to work with different systems; 
specifically, ROS’s navigation stack was used, and some sensors come with ROS-compatible 
modules. Overall, systems provided with the navigation stack did not work out of the box and 
needed to be configured in a manner specific to our system.  

ROS allows efficient debugging and adjustment of modules, as the topics that modules use to 
communicate can be monitored, manually fed data, and easily adjusted. Systems such as IOP, 
image processing, goal selection, and navigation (Movebase) were all developed and debugged 
modularly, which simplified programming efforts.  

Figure 1: VERTIGO Final 
Design 
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ROS provides other advantages suited to our application. We used the ROS Gazebo simulator 
to test navigation systems before deploying them to the actual robot. We also use the ROS 
transform library, which allows rapid and efficient transformation of data. This refines the mapping 
process by combining all sensor data into a common frame of reference, eliminating the possibility 
of data skew. 

 

Odometry & Kalman Filter 

VERTIGO’s odometry consists of a built-in ROS Kalman filter, which is fed data from a variety 
of position sensors. The Kalman filter is a mathematical approach of calculating actual data values 
with respect to positioning of the robot and, in this context, also handles the fusion of these 
disparate data types (e.g. IMU, GPS, etc). Since the GPS and IMU already have a built-in Kalman 
filter, we found that one Kalman filter was sufficient to our application. 

We also analyzed the use of other tools provided in the ROS navigation stack, including 
Adjustable Monte Carlo Localization (AMCL) and SLAM Gmapping. AMCL accepts a static map 
and a LiDAR scan and will attempt to approximate the robot’s position within that map. Gmapping 
is similar but produces a ROS transform between the given static map and the robot’s odometry 
frame within that map. The benefit of using such localization systems is that they reduce the 
uncertainty in the Kalman filter’s final approximation by providing world-referenced position data. 
We simulated both modules, but ultimately decided to use the Kalman filter to fuse our globally-
referenced and dead reckoning sensor data. 

Local & Global Planner 
VERTIGO uses a program called Movebase, an executable with plugins that influence different 

behaviors of the robot. Movebase takes in all the filtered sensor data and constructs a map, then 

Figure 2: Block Diagram of System Architecture 
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navigates that map based on the setting configuration. Those behavior settings affect how 
VERTIGO will respond to obstacles and recover when no path plan exists.  

More specifically, Movebase is a plugin manager that manages the global planner, local 
planner, costmaps, and recovery behaviors. The global planning stage will keep track of the map 
as a whole and attempt to select a path between start and end location; in our case, the system uses 
a simple version of Dijkstra’s algorithm, although more efficient navigation methods could have 
been chosen if this proved too taxing computationally. The path this generates is sent to the local 
planner which operates on a smaller window in the immediate vicinity of the robot; we used a 
plugin called Trajectory Rollout, which samples and simulates possible linear and angular 
velocities of the robot to determine the optimal motor speed of VERTIGO. This system considers 
obstacle proximity, goal proximity, and global path proximity in making decisions. 

The Global Planner can use Dijkstra’s algorithm since the environment is tracked as a weighted 
cost map; this map can be interpreted as a node weighted graph. The algorithm searches the path 
to find the lowest weighted path to the final destination from the starting point. 

Goal Selection 
The local and global planner generates the path to the goal given by the goal selection algorithm. 

The purpose of the goal selection algorithm is to keep the robot from losing its heading and turning 
around unexpectedly. The robot uses a system given by image processing to map right and left 
lane lines separately in a costmap. With this information, VERTIGO knows how to keep its 
heading in the forward direction by comparing the history of the right/left lane line map to the 
instantaneous image processing data. The goal selection algorithm toggles between image 
processing goals (local goals that are generated in the presence of lane lines) and GPS goals 
(provided in the Auto-Nav and IOP challenges). 

LiDAR 
VERTIGO uses a VLP-16 Velodyne LiDAR Puck equipped with a 360-degree horizontal field 

of view (FOV). The LiDAR on VERTIGO is configured for a 270-degree FOV horizontally with 
a 30-degree vertical FOV. Raw data from the LiDAR comes as a 3D point-cloud. The 3D point-
cloud is reduced to a 2D laser scan primarily to reduce computation. The data runs through two 
filters during this reduction; a voxel grid filter and a radius outlier filter. The radius outlier filter 
only passes points with a given number of neighbors in a threshold distance. The voxel grid filter 
applies a 3D grid of cubes measuring 343 cubic centimeters (7cm x 7cm x 7cm) over the input 
data. The data is then downsized by passing the centroid of each voxel cube to the laser scan. 

GPS & IMU  
VERTIGO uses a Novatel Propak6 GPS receiver coupled with two VEXXIS™ GNSS-502 Dual 

Band Antennas, making VERTIGO capable of SPAN technology. This technology provides 
continuous 3D positioning, velocity, and altitude. When the GPS receiver and antennas are 
running, VERTIGO can localize its position to within 4-30cm. The longitude and latitude are 
transformed into UTM – Universal Transverse Mercator – to generate a transform for the data, 
enabling exact positioning.  

VERTIGO also uses a KVH CG-5100 IMU for extra certainty in navigation. The IMU collects 
data on the positioning and heading of the robot, which integrates the data with that of the GPS for 
use in localization, goal selection, and navigation. 
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Mapping 
VERTIGO tracks its current and past environments using ROS implemented costmaps. These 

maps are marked using our LiDAR and camera sensory equipment. The sensors are also able to 
clear obstacles off the map, dependent on the situation. Obstacles identified by the sensors are 
marked with confidence values, such that VERTIGO can choose to recognize an obstacle as being 
absent or present. 

VERTIGO’s LiDAR and camera each have their own individual costmaps. This is done to 
prevent one sensor from clearing objects that the other sensor sees. We then integrate the two maps 
together by converting the data types of the individual maps into one recognized universally by 
the ROS control system.  

Image Processing 
Image processing is used to detect lane 

lines. VERTIGO uses a Multisense S7 3D 
Camera by Carnegie Robotics. The camera 
provides the distances of each pixel in a 3D 
point cloud format. The information below 
explains how the locations of the lane lines are 
extracted from the raw camera data.  

Ground Plane Extraction 
VERTIGO creates a 2-D image of the 

ground plane from the 3-D point cloud data. 
Since the camera is mounted at an angle of 35-
degrees below horizontal, the ground plane 
can be extracted by accepting points at a 
certain distance along the camera's z-axis. 
Every point in the ground plane forms a triangle with the camera in which the hypotenuse is the 
camera's Z-axis, the base is the distance from the robot base, and height is the camera height. If 
the Z-value for a point in front of the robot is less than the expected ground hypotenuse value, then 
this point is rejected from the ground plane image. We can adjust the threshold for the Z-value 
cutoff in case there are variations in the height of the ground plane. 

 
Figure 4: Standard Image Figure 5: Ground Plane Extracted Image 

Figure 3: Detail of Camera Mounting Angle 
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Metric Image  
In the extracted image, the distance per pixel is not uniform due to the optical characteristics of 

the camera which causes difficulties during the sensor fusion operation with the LiDAR. Hence, a 
uniform number of meters per pixel in the ground plane image is important to accurately mark the 
locations of the lane lines and fuse then into the navigation maps.  

 
Vision Code 

VERTIGO uses vision code to extract a 
binary (black and white) image from the 
metric image. This is the final output used 
for navigation. The vision code uses the 
openCV C++ library, which has a list of 
standard image functions and classes. The 
RGB planes are extracted from the metric 
image. Because grass typically has a higher 
red content than blue content, the red plane 
is subtracted from twice the blue plane. In 
doing so, the image is kept on a 0-255 gray-
scale interval, while creating a stark 
contrast between the grass and the white 
lane lines. Intensity thresholding is applied to create the binary image. Canny edge and median 
blur functions are used to reduce computation for the Hough transform and increase accuracy 
through elimination of salt and pepper noise. The Hough transform is used last to pass only points 
that fall into a certain set of lines. These lines are the lane lines, thus giving the final output image.  

Mapping Integration 
VERTIGO converts the binary image into a laser scan allowing us to mark and clear cost maps. 

Because the binary image came from the metric image – a geometrically uniform image in meters 
per pixel – we can derive the location of the lane line pixels in VERTIGO’s X-Y coordinate system. 
The X and Y distances are converted to polar distances to match the laser scan data type. 
VERTIGO’s system adds this layer to the overall cost map and gives authority to mark and clear 
only on this layer.  

To avoid erasing lane lines, the scan is given a variable size based on the locations of lane lines 
in the binary image. The scan only has authority to mark and clear lines from a region determined 

Figure 6: Metric Image Re-shaping 

Figure 7: Binary Black/White Image 
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by the minimum and maximum angles of the white pixels with respect to the robot, i.e. the areas 
that are known to be see clearly.  

 
Figure 8: IP Costmap 

E-Stop and Controller 
The controller has both a joystick for manually controlling VERTIGO, and an E-stop button 

for stopping the robot in case of emergencies. What makes the controller unique is its versatility, 
the controller is custom made with multiple mode selections. There are two distinct ways to stop 
the vehicle when the E-stop button is pressed that are differentiated by a switch: Decelerate-to-
zero (DTZ) and Emergency stop. DTZ mode stops the robot without turning it off, while E-stop 
mode shuts VERTIGO down, making it ideal for extreme emergency situations. There is another 
mode select for switching VERTIGO between autonomous mode and remote-control (RC) mode. 
Lastly, there are push buttons for the Segway’s balance mode; pushing the correct button allows 
for VERTIGO to operate with or without its caster wheel attached.  

The controller’s programming also manages the indicator LEDs, setting them to different colors 
to indicate connectivity between VERTIGO and the controller, autonomous mode/remote-control 
mode, and when the robot has been E-stopped.  

The controller is designed such that it does not need to be disassembled to access the internal 
Arduino for reprogramming; this allows limitless modes or functionalities to be edited, added, or 
removed.  

The LED functionality can be reprogrammed to indicate current status, which carries the 
potential for real-time feedback from the robot. In this way, the team can potentially detect errors 
while testing or during the competition based on the color and status of the LEDs.  

Hardware  
VERTIGO uses a custom RC controller based on two Arduino Unos for data processing and 

control. The Arduino has an operating voltage of 5V with a 16 MHz clock. To cut down on the 
amount of processing and potential delay resulting from the Arduino’s multiple functions, an 
Arduino Pro-Mini powered by ATmega328 was used to control the LED programs for VERTIGO. 
This allowed for less than one millisecond delay in processing for both E-stop and joy-stick 
commands, and less than one millisecond delay for the corresponding LED indicators. Two Xbee 
Pro SB3 wireless transmitter/receivers create the serial point-to-point network connection to send 
data between VERTIGO and the wireless controller.  
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IOP Challenge 
One of the communication systems implemented in VERTIGO is the Joint Architecture for 

Unmanned Systems (JAUS) protocol. VERTIGO uses the 2010 version of the Aerospace 
standards. These standards specify the unique structure, transportation, and responses for each 
message and service. The three types of communication that JAUS enables are discovery, 
navigation commands, and reporting. 

For the implementation of JAUS, VERTIGO uses the JAUS Toolset (JTS), an open source 
software which uses a Graphical User Interface (GUI) input system to autogenerate the code for 
JAUS functionality. This software relies on JR Middleware to create the network connection. 
However, JTS is built using a different build tool than the rest of the module systems on 
VERTIGO. Thus, there is no direct way to interface between the JAUS networking system and 
ROS.  

The ROS/IOP bridge is an open-source tool that, as the name suggests, creates a bridge between 
an IOP communication node and a ROS robot control system. The bridge allows the JAUS 
components to access data about the robot’s status, position, velocity, and more, to be used in 
communications with an external controller or other entity.  

The system that we have implemented includes only one component, which will contain all 
the services needed for the competition. Each service is defined in the SAE standards as a finite 
state machine, which is implemented by the ROS-IOP bridge as a plugin.  

Innovations  
Hardware 
E-Stop Controller  

Teams competing in IGVC are required to have a hard E-stop on the base of the robot, as well 
as a remote-control E-stop that the judges will hold during the competition. This is standard for all 
teams. VERTIGO and Detroit Mercy took wireless e-stop a step further with a controller that is 
efficient, versatile, and easy to use. The controller has modes for E-Stop, remote control, balance 
mode, tractor mode, and DTZ/Emergency Shutdown functionalities. In addition, the controller also 
commands the LEDs on VERTIGO. Likewise, the software in the controller acts as a fail-safe: 
VERTIGO will not run without a successful connection with the controller, and if the controller 
were to disconnect for any reason, the E-stop is immediately activated. Lastly, the controller is 
easy to reprogram for any additional use the robot might need.  

Software 
IOP System 

The Interoperability Profiles (IOP) system designed for the challenge works as a self-contained 
software system. It reuses several functions from the main Segway control system by reading from 
the existing ROS topics, especially those broadcasting sensor and position data. It also incorporates 
several unique functions, which help to integrate with the robot control system.  

The innovation in JAUS is in the way that the system was created. We used several open-
source tools, which we modified to meet the specifications of our system. The most significant 
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roadblock was with incorporating the ROS/IOP Bridge software. This software was designed for 
a different version of ROS and Ubuntu than those being used for the rest of the robot’s systems. 
Therefore, we had to adjust the code to meet our specifications. 

Right and Left Lane Differentiator 
The right and left lane line differentiator is an algorithm that differentiates the two lane lines. 

This is important in determining if the robot is driving in the correct direction. The differentiator 
requires an initial condition of seeing at least one lane line and facing within 90-degrees of the 
forward direction. The algorithm uses connected component analysis to determine if the bottom of 
the lane is in the right or left half of the image. This, along with knowing the angle of the line, can 
determine if a lane line is a right or left lane. The differentiator converts the image to a laser scan 
and publishes it to a cost map for each lane. Having a cost map for each lane is important in 
correcting failures in the detection, because the histories of the lanes are known. Ultimately, this 
algorithm will be used to keep the robot driving forward throughout the course. 

Failure Points and Resolutions 
Hardware 
Segway Electrostatic Battery Discharge 

While working on VERTIGO, there were system faults appearing claiming a completely dead 
battery, manifested by a loud beeping and fault logs. The measured battery voltage proved this 
false by showing as fully charged. After contacting tech support for the Segway base, a software 
reset tool was acquired which reset the faults, and if the problem occurs again we will understand 
it. We have learned to check the battery voltage, as well as the necessary measures to turn off the 
beeping noises to continue full functionality.  

Velodyne LiDAR 
The LiDAR has a minimum range of 40 cm. When an object is within 40 cm of the LiDAR, it 

will be cleared from the map, if clearing privileges are given. This is a problem, because the global 
planner hugs corners (typically from barrels marked in the map) to minimize the distance of the 
planned path. When the barrel is within 40 cm of the robot, the barrel will be erased from the map 
and a new path will be created. Without the object in the map, the path planner will tell the robot 
to drive through the barrel. One possible solution is to increase the inflation radius of objects in 
the map to greater than 40 cm. This, however, could block potential paths. A better solution in this 
situation is to simply remove the clearing privileges from the LiDAR. 

With the clearing privileges removed from the LiDAR, the barrels will not be removed from 
the map, even when the LiDAR is not reporting that it sees them. Removing clearing privileges 
from a sensor is not typically a proper solution to integration problems between perception and 
mapping. This is because if the robot sees an obstacle while its localization has a failure, the robot 
will mark the obstacle in an incorrect location in the map. If clearing is removed, the obstacle will 
be reported in more than one location in the map, and the problem cannot be fixed. While it is a 
risky decision to remove clearing from the lidar, it was determined that the shape and size of the 
objects detected by the lidar would not cause considerable marking to the map with the minimal 
amount of odometry slippage that VERTIGO has. 
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Software 
Right and Left Lane Differentiator 

The lane differentiator has a likelihood of failure when the robot is perpendicular to the lane. A 
failure here can cause the robot to think that it is facing the opposite direction, making the robot 
want to face backwards. This can be fixed by comparing the output of the differentiator with the 
history of the right and left lanes from their individual costmaps. 

Testing and Debugging 
VERTIGO has gone through rigorous testing and debugging. One of the bonuses of using ROS 

is that it lends itself to debugging. ROS enables the printing of topics to verify the actual vs. 
expected values of our modular systems, allowing us to check values in real time and handle 
deficiencies in code proactively as they appear.  

In relation to JAUS, setting up the multicast network for testing proved an area of difficulty. 
The university public wi-fi network, which we used for initial testing, did not allow multicast 
communication. We checked to ensure that the router on VERTIGO would allow multicast 
communication, then we obtained a separate wi-fi router to test in a way that would not monopolize 
use of the robot.  

Conclusion 
The innovations and technology that surround VERTIGO are already being widely used in the 

automotive industry. Our exposure during school gives us an advantage to other students, as it 
gives us a chance to practice lifelong learning. Lifelong learning is an important component of an 
engineering education; being able to practice it in school makes us more adaptable to new 
technologies and processes. In this project we have encountered a variety of new technologies that 
have forced us to practice this skill. Additionally, to complete the competition tasks we have had 
to read and follow a variety of technical standards, another important transferrable skill that will 
follow us as we move on to industry jobs. The automotive industry, along with other industries 
that employ electrical and robotics engineers, is replete with standards and other sets of technical 
rules to be followed. By ensuring that we are able to understand and follow these rules, we prove 
that we can function successfully in a highly regulated industry. 


