2018 Intelligent Ground Vehicle Competition

Name

Valerian Ratu
Vincent Yuan
Winnie Mui
Gareth Ellis
Emma Park
Sherry Wang
Robyn Castro
Raad Khan
David Gill

Collin Lucas Eng
Arman Zhakypbekov
Geoffrey Hanks
Jacky Sun
Sharon (Shichen) Fan
vy (Jiayuan) Shi
Leo Wei

Chris Heathe
William Gu

Min Gyo Kim
Martin Freeman
Marcus Swift
Simon Jinaphant
Marinah Zhao
Remy Zhang

“Elsa X"

UBC Snowbots

University of British Columbia

Department

Computer Engineering
Electrical Engineering
Engineering Physics
Computer Science
Mechanical Engineering
Mechanical Engineering
Computer Engineering
Electrical Engineering
Electrical Engineering
Applied Science
Applied Science
Applied Science
Mechanical Engineering
Mechanical Engineering
Mechanical Engineering
Applied Science
Economics and Math
Computer Engineering
Computer Science
Mechanical Engineering
Mechatronics
Computer Engineering
Computer Engineering

Applied Science

Position
Captain
Co-Captain/Tech Advisor
Past Captain
Software Lead
Mech Lead
Mech Lead
Software Sub-Lead
Software Sub-Lead
Mech Sub-Lead
Mech Member
Mech Member
Mech Member
Mech Member
Mech Member
Mech Member
Mech Member
Software Member
Software Member
Software Member
Software Member
Software Member
Website Manager
Software Member
Mech Member

| hereby certify as the faculty advisor that the design and engineering of this vehicle to be
entered in the 2018 Intelligent Ground Vehicle Competition by the current student team has
been significant and equivalent to what might be awarded credit in a senior design course.

Digitally signed by W
w SCOtt Scott Dunbar

Date: 2018.05.16 06:55:30
Dunbar e

W Scott Dunbar

Introduction

Elsa X is a vehicle designed and constructed by UBC Snowbots. The vehicle takes its name
as part of a previous design from two years ago named Elsa. The goal for this year was to
improve on previous designs for ease of manufacturing and shipping, allowing easier
transportation and increased maneuverability. Multiple sensors including a LIDAR, compass,
GPS, and camera will be used to gain environmental data which will then be processed to
navigate through the course. This report outlines the design decisions made to accomplish
this goal and the integrations of the different components of the vehicle.

Team Organization

UBC Snowbots is a multidisciplinary undergraduate team involving students from a variety of
engineering departments and the computer science department. The team is divided into
three main subteams: the mechanical subteam, the software subteam, and the
administrative subteam. The mechanical subteam is responsible for all the fabrication and
design of the vehicle as well as designs for the power circuitry. The software subteam is
responsible for all sensor firmware and navigational software. The administrative subteam is
responsible for outreach, sponsor relations, and managing the team financials. The team
meets regularly on Saturdays for at least four hours throughout the school year and
additional time is spent throughout the rest of the week on assigned projects. The team
structure is displayed in Figure 1.

UBC Snowbots

v v !

Mechanical Software Administrative
@ Navigational
Firmware Software
h 4 A A h 4
Mechanical Design Power Circuitry Funding Qutreach

Figure 1 - UBC Snowbots Team Structure

Design Process

The design of this year was focused on mechanical simplicity paired with more sophisticated
software design. The design of the robot - both mechanical and software - was done
throughout the 2017-2018 school year. We referred to our past years’ designs as reference
during the build and iterated upon it by assessing pain points encountered and past
performances. A large portion of the team is composed of new members and people new to
various roles. Thus, a large majority of the design process included teaching and instructions
from senior members. The software team and mechanical team maintains parallel
development paths with construction completion set at the end of the school year with time
for integration during the last month.

MECHANICAL DESIGN

Overview

The goal of this year’s design was to create a vehicle that has a simple and compact design
to simplify transportation to the competition. Thus we focused on using simple and
removable parts with easily machinable materials. The pain point of our previous year's
design was the gearbox assembly - which had alignment issues and had a tendency to
produce jerky movements. Thus another major focus for this year's design was a more
robust and simpler drive train.

Chassis Design

The chassis of Elsa X is a simple square frame, with the core idea of simple manufacturing,
assembling, and shipping. The frame is made with aluminium to minimize overall weight but
also retain a level of rigidity. Two sliders can open from either side of the robot, as shown in
Figure 2, which enables the team members to work on the electrical system and the laptop
simultaneously. The bottom of the chassis also holds the payload as well as houses the
LIDAR.

Figure 2 - The chassis skeleton.

The top and sides of the robots is covered with corrugated plastic to further reduce the
overall weight. The corrugated plastic is enclosed onto the robot via hinges and velcro,
protecting the robot from possible harsh weather and road conditions.

Drivetrain Design

The drivetrain is located at the center of the robot with differential drive. There are two
casters at the front and back to provide balance and support. Encoders are attached to the
shafts to provide finer input into the software localisation system.

The motors used are a pair of Ironhorse 12V DC motor, which were chosen from torque and
speed calculations as well as previous experience using them. The two parameters limiting
the robot’s performance was maximum and minimum speed given by the competition
guideline. The maximum allowed speed was: 5mph. The minimum allowed speed was:
1mph. We estimated the weight of the robot as 50kg and used a cylinder on ramp model to
calculate the required torque and speed, estimating the friction coefficient as wood surface.
The selected motors are able to provide 60 Nm of torque to provide enough power to reach
maximum speed while maintain traction post-ramp.

Tower
A simple metal tower is designed to house the camera and the GPS antenna. The camera is
held in place with simple tripod base and a metal plate acts as an extended ground plane for

the antenna. The tower is held in place by inserting it into a hole in a metal bar attached to
the chassis and secured on either end to minimize swaying and instability.

Figure 3 - The tower design

Power System (Electrical Design)

51 L 1

fo—

Figure 4 - The power system

The robot is powered through two 12V LiPo batteries. There are fuses in place to reduce the
risk of shorts and overload in the circuit.

Emergency Stop

There are both a physical and wireless emergency stops attached to the circuit as per
regulation. The wireless emergency stop is controlled via a wireless remote and the physical
emergency stop is connected to a push button on the top of the robot. The emergency stops
are in series so that either would be able to cut off power from the entire system.

LED System

An LED system is also integrated to show the mode of the robot as per specifications. The
lights are designed to turn on when power is available to the motors and blinks during
auto-nav procedures.

SOFTWARE DESIGN

Pointcloud from Zed Filter Points by height
Stereo Camera from ground

Extract Lanes as
polynomial lines

v

Add new obstacles to
our map based on

— Filter Points by HSV =9

Extract Cones as

LaserScan from Lidar —9 discrete points

curr. position
| Odometry from GPS J
Determine Position via Compute path through
] Odometry from Encoders Extended Kalman map to goal from curr.
Filter position
Odometry (IMU Message)
from IMU
Compute twist

message from path

v

Send twist message to
robot

Figure 4 - The software architecture

The software system is built on the Robot Operating System (ROS) Framework. This allows
for independent development of a distributed system whereby individual executables can
communicate via pre-designated messages over a TCP/IP protocol.

PointCloud Stack

To track lines in the vicinity of the robot, we use a stereo camera to generate a pointcloud of
the robot’s surroundings, then extract the lines from said pointcloud. We initially used the
ZED stereo camera (as it was already available to us), but moved to the Intel Realsense
D415 part way through the year. The Realsense uses IR and offloads the image processing
from the computer to the camera itself, allowing us to dramatically increase battery life of our
computer and run the system on laptops without a large discrete GPU. This pointcloud is
then passed through various filters to find white lines on the ground.

Onginal Pointcloud HSV Conversion White Line Filtering

Figure 5 - The line extraction process

Once the point cloud has filtered out most points that do not represent the white lines (Figure
6), the next task is to extract the lines out of the point cloud. Density-based Spatial
Clustering of Applications with Noise (DBSCAN) is performed to group the points into
clusters, where each cluster represents a line (Figure 7). DBSCAN is a clustering algorithm
that clusters points that are densely grouped together, and uses a hyperparameter to define
the minimum density required for a series of points to be clustered together. DBSCAN was
chosen for two main advantages; it can cluster convex shapes and it is robust to outliers
since it filters out points that are not closely packed together.

After performing DBSCAN, each cluster is then used to compute a best polynomial line of fit
using linear regression (Figure 8). This allows us to extract discrete lines from the extracted
pointcloud data and feed it into our mapping system (Figure 9).

Figure 6 - The initial state of a Figure 7 - Clustering of the point Figure 8 - Linear Regression
filtered point cloud cloud

Linear regression is performed on
The point cloud contains two The point cloud is clustered into each cluster to generate a best
dense lines and some sparse two lines with some given polynomial line of fit.
outliers. hyperparameters on density, and

the outliers are discarded.

Point clustering Line extrapolation Line overlay

Figure 9 - Line extraction in practice

Cone Detection

The cone detection stack includes a cone extractor node that uses LIDAR laserscan data to
detect cones of a certain radius in the robot's vicinity. We first sweep the laserscan from the
minimum to maximum angle to detect groups of laserscan points close to each other. Then
for each group, we split potential clusters of cones (that will appear as one line made of
points from the laserscan perspective) into single cones, by finding the local minima of
angles formed by two lines converging on some point in the group. Finally, we use a hyper-fit
circle fitting algorithm to calculate the center coordinates and radius of some cone, based on
the laserscan points that hit its edge. Cones with radii that match closely with expected
values are kept, while other objects that do not fit the radii are discarded. Again, this allows
for the extraction of discrete obstacles, which may be then fed into our custom mapping
system.

Localisation Stack

Localisation of the robot is performed via an Extended Kalman Filter (EKF) which merges
sensor data from our GPS, IMU, and wheel encoders to get an accurate estimate of the
robots current state. We use the ROS robot_pose_ekf package for this purpose, as it was
determined that there would be almost no benefit to writing our own implementation for the
amount of work that would have been required.

Mapping

Based on experiences from previous years with localisation error due to our lower cost
sensors, we have developed a mapping system that allows for accurate and robust mapping
of our local environment. By discretizing obstacles (cones and lines) in our environment, we
can account for drift in the state of the robot by updating and moving known obstacles based
on new sensor readings, rather than “cluttering” up the map with many obstacles that are
actually the same, but appear in slightly different relative positions due to state drift.

PathFinding

The pathfinding module receives an occupancy grid where each cell represents either a free
or occupied space. The occupancy grid is in a frame that is defined relative to the world
frame, and it has several properties such as resolution, width, and height that determine the
conversion of a continuous space into a finite number of discrete cells.

In addition to the occupancy grid, the module also receives a starting point and an end point
represented in the world frame. It transforms them into the frame of the occupancy grid in
order to find which cell in the obstacle grid they fall into. The starting point is guaranteed to
be inside any grid produced by the mapping module since the starting point is always
assigned to be the location of the robot; which means the information regarding obstacles
around the starting point will always be available thanks to all the sensors equipped on the
robot. On the other hand, the goal point may be far out of reach from the sensors, resulting
in cases where the goal point is located outside of the occupancy grid. In order to cope with
such scenarios, this module assumes that all cells outside of the occupancy grid are free.
The intention behind this approach is that the module recalculates the map and path by the
time the robot reaches the once unknown part of the map.

Given a starting and end point as well as an occupancy grid, the module calculates the
shortest path between the two points using the A* algorithm with diagonal movements
allowed. The path is represented as an ordered list of positions, and it is first calculated in
the frame of the occupancy grid, then converted back into the world frame.

Navigation

To generate the robot's instantaneous velocity and turn rate, we use the path calculated by
the path finding module. By generating vectors from waypoints in the given path message,
we can take their weighted average (with vectors closer to the origin given a higher weight)
to calculate a velocity and turn-rate.

Firmware

The firmware for Elsa X is a ROS node run from an Arduino Mega board. The node receives
a twist message from the navigation node and an odometry message from the encoders.
The node uses a PID library to calculate the output velocity using the navigation twist
message as the set value, and the odometry message as the input value. Finally, the node
takes the PID loop’s output of a linear and angular velocity and converts it to left and right
motor values compatible with Elsa X’s differential steering system before sending
appropriate PWM commands to the electronic speed controllers governing the motors.

Failure Point Identification and Resolution
Mechanical

With the design focused on implementing differential steering for ease of computation on the
software portion of our design, balance of the robot was important. Previous experience has
lead us to believe that castor balance for differential drive was a main failure point which
caused wheel slippage and stalled motors. As a result, with this year's design, the drive
wheels have been centered with two castors added respectively on either side of the drive
axis. This design allows the robot to have three points of contact in any orientation should
there be uneven terrain infront or behind the robot.

Further it has been identified that the main failure point of the robot would be the belly plate
where all load of the robot is transferred to the drive shafts. As a result, 3/16” aluminum
sheet was chosen to to hold our drive motors, with %" aluminum bars added for further
support of bending perpendicular to the drive shaft axis, between the motor mount points.

Due to the vertical loading on our robot, to prevent any possible buckling, bending and
shearing of our bolts and support shafts, angle aluminum has been chosen to be the main
shape to support vertical load along the robot.

Electrical

Main source of failure for our electrical system would be over current and heating of the
system under high load and extreme heat from the sun. To protect the system, fuses have
been placed between the batteries and the main circuit to prevent any over current from
shorting or motor stalling.

Second, the electrical system is subject to EMF interference from motor back current through
the circuit as well as magnetic fields from permanent magnets in our drive motors. As a
result, EMF sensitive sensors have been chosen to be mounted outside of the aluminum
robot chassis that acts as a Faraday cage to our sensors. The circuitry for sensors and drive
motors have also been decoupled and separated.

Software

We employed several layers to help detect and prevent points of failure in the software
system. This year we have strived to automate as much failure point detection as possible.
Alongside our various layers of simulation and testing (see below), we have made it a
requirement that all code added to the code base must go through a full code review process
by at least one senior member of the team before we permit it to be merged. Furthermore, to
increase code readability, and hence make it easier to review, we have added enforced code
formatting. All checks for formatting and code review are performed automatically on Github,
preventing any code that has not been reviewed, formatted, and validated from entering the
repository.

Simulations and Testing Employed

Unit Testing

We have made it an absolute requirement that all code added to the code base be
thoroughly unit tested via gtest. This requirement has been made an integral part of our
training process, helping ensure everyone full understands the level of testing required, and
is furthermore enforced in code review, where code coverage is a major point the review of
any pull request.

Regression Testing

For larger systems involving several ROS nodes, or even complex systems with a single
ROS node, we have made ROSTests an absolute requirement. ROSTests allow us to test
larger sections of our system then unit testing would allow, by providing input (such as
specific images or lidar scans) to the system, and checking the output (such as paths,
detected cones and lines, or generated maps). This allows us to validate the interaction
between the individual components of our system in a more deterministic manner than
simulation would allow.

Simulation

To allow the software team to test the entire system without having to have a complete and
functioning robot, we have developed a custom robot model in Gazebo that allows for the
simulation of the entire system, all the way from sensor input to robot movement. This allows
us to rapidly test different scenarios that might be difficult to replicate in the real world,
increases ease of development, and allows the mechanical team more slack in their timeline
were a full physical robot required to test the entire system.

Figure 10 - Software Simulation

Physical Pre-Robot Testing

To assist with sensor integration and performance testing, as well as to allow for various
sub-systems to be tested individually in the physical world before the completion of the full
robot, we have developed a test cart that allows for quick and easy testing of
sensor-dependent systems in real world environments. The cart can be equipped with all the
sensors that we have on the final robot.

Figure 11 - Test Cart

Vehicle Cost

The overall cost for Elsa X is defined below:

Item Price (CAD)
Motors $745.00
Metal $291.44
LiPo Batteries $500.00
Laptop $1,600.00
GPS $1,235.00
SICK Lidar $4,500.00
Intel Realsense D415 $200.00
Wheels $296.70
Encoders $264.28
Electronic Speed Controllers $223.98
Total: $9,856.40

Conclusion

Members of UBC Snowbots worked hard on the design and construction of Elsa X this year.
Our team has gained a lot of new members and each have worked hard to learn and pick up
the required skills in order to meet the competition goals. The team is looking forward to
bring Elsa X to IGVC 2018 and are excited to compete this June.

