
UNSW AUSTRALIA

INTELLIGENT GROUND VEHICLE COMPETITION
2015

UNSW Mechatronics Design Report

Quality Certification

I, Dr. Mark Whitty (faculty advisor), hereby certify that the design and engineering of the

vehicle by the current student team has been significant and equivalent to what might be

awarded credit in a senior design course.

Contents

Contents i

1 Introduction 1

1.1 Team Structure and Design Process . 1

1.1.1 Time Management . 2

1.1.2 Task Tracking . 2

1.1.3 Project Failure Points and Resolution . 2

2 Hardware Design 3

2.1 Mechanical Design . 3

2.2 Sensors . 4

2.3 Electronic Design . 4

2.3.1 Communications . 4

2.3.2 Power Distribution and Usage . 5

2.3.3 Control board . 5

2.3.4 Emergency stops . 6

2.4 Safety, Reliability and Durability . 7

3 Software Design 8

3.1 Localisation . 8

3.2 Mapping . 9

3.2.1 Obstacle Detection . 9

3.2.2 Line and Pothole Detection . 10

3.2.3 Semantic Inference . 10

3.3 Navigation . 10

3.3.1 Goal Management . 10

3.3.2 Path Planning . 11

3.3.3 Path Following . 12

3.3.4 Drive control . 12

4 Testing 13

4.1 Simulation . 13

4.2 Small-Scale Real-World Testing . 13

4.3 Large-Scale Real-World Testing . 13

4.4 Failure Testing . 14

5 Integration Management 15

6 Conclusion 16

i

1. Introduction

Figure 1.1: Prototype platform on a small course.

This report presents the UNSW Mechatronics team approach to the 2015 Intelligent Ground Vehicle

Competition. Many of the members of this year’s team have competed in similar competitions,

and much of the development of this year’s entry has been influenced by the lessons learned over

the previous years. The requirement of the competition is to ensure robust and fully autonomous

navigation of an unmanned ground vehicle between given GPS waypoints in the minimum time

possible. The vehicle must stay within lanes and avoid randomly placed obstacles such as barrels

and flags.

To ensure fulfillment of the competition requirements, the following objectives must be met and

are detailed in their respective chapters.

• Provide effective team management strategies throughout the design process (Chapter 1)
• Design and procurement of mechanical and electrical components (Chapter 2)
• Design of software to provide obstacle avoidance and effective navigation (Chapter 3)
• Testing of the system to ensure robustness of design (Chapter 4)
• Provide innovative strategies to increase ease of deployment (Chapter 5)

1.1 Team Structure and Design Process

This chapter details the team’s management practices, meeting structure, and design process. The

team members, along with their departments, are documented in the table below. An estimated

750 person-hours was expended for this project.

Team Members Email Department

William Andrew w.andrew@unsw.edu.au Platform, Software
John Lam john.lam@unsw.edu.au Platform, Software
Stephanie McArthur s.mcarthur@unsw.edu.au Platform
Fredrik Westling fredrik.westling@gmail.com Platform
Samuel Marden s.marden@unsw.edu.au Software
Stanley Lam s.lam@unsw.edu.au Software

1

Introduction 2

1.1.1 Time Management

The team has heavily utilized the Critical Path Method (CPM), a project management technique,

when sequencing and scheduling tasks in the development of the Ground Vehicle. A worst-case

time estimation approach was used for generating a work breakdown structure, ensuring that the

new drive platform solution could be constructed with sufficient testing time prior to the event.

1.1.2 Task Tracking

(a) Project tasks and milestones spreadsheet. (b) Software department tasks spreadsheet.

Figure 1.2: Shared Google Documents for managing internal deadlines and deliverables.

To manage the status and deadlines of tasks, activities and milestones, a shared Google Documents

spreadsheet was developed to track the project status. During team-wide meetings, this spread-

sheet, as shown in Figure 1.2 also acted as the meeting agenda, helping the team stay focused on

project tasks and responsibilities. Department tasks was also managed in a similar fashion, but

contains additional cost, dependency, risk, importance and other decision metrics.

1.1.3 Project Failure Points and Resolution

A development focus for the team is to use electrically, algorithmically, and mechanically robust

methods to reduce the impact of failures. There are three main areas that the team has identified as

potential failure points: mechanical implementation (which includes vehicle dynamics), electrical

implementation and software implementation. To ensure that the team has continuing high levels

of success, the team regularly tests the vehicle beyond the operating bounds of the competition.

Testing methodology is covered in Chapter 4. Specific failure points and resolutions are further

covered in Chapters 2, 3, and 5.

2. Hardware Design

Figure 2.1: Platform with components labeled.

This chapter details the hardware design of the platform. Section 2.1 provides an overview of the

mechanical design of the platform, Section 2.2 reviews the sensors that are used on the platform,

and Section 2.3 details the electronic design. An overview of the safety, reliability, and durability

considerations that have gone into the design is given in Section 2.4. A high level costing is shown

in Table 2.2.

2.1 Mechanical Design

An iterative design methodology was used to construct the UGV, as the platform was used in

other applications prior to the IGVC2015 competition. At each stage of assembly and design, the

goal was to maintain a testable state for the next day. CAD modeling using Dassault Systèmes

SolidWorks and AutoDesk Inventor was also performed in parallel to assist in the frame design and

placement of components, as seen in Figure 2.1.

1” square, 1/8” thick aluminum box and 1/8” aluminum plate was selected as the primary structural

materials in the assembly due to their high availability and ease-of-working. The design is fastened

together primarily using high tensile steel M6 bolts and locking nuts or washers. This is in contrast

to earlier prototypes which used aluminum rivets; however prolonged testing on difficult terrain

caused the rivets to shear or loosen. The current design is extremely robust to rough terrain,

vibration and high speed manoeuvring and has a low centre of gravity to allow rapid movement.

The design has changed from a 6WD robot for the Australian AGVC competition to 2 wheel

differential drive to reduce friction whilst turning which improves the battery life and control of

the robot. Three casters, two at the front and one at the back keep the platform stable, and are

raised above the drive wheels in order to clear ramps and uneven terrain. We have also designed

3

Hardware Design 4

it to disassemble into modules to make it easier to transport internationally. The drive base of

the platform is powered by a two Toughbox gearboxes from AndyMark, each of which houses two

coupled drive motors. With a tested 150 lb payload limit and a top speed of 7 mph, this platform

will easily carry the 20 lb payload and operate above the minimum required speed of 1 mph on a

15 percent gradient.

2.2 Sensors

The following sensors are mounted on the vehicle to provide the robot with the ability to navigate

autonomously:

Motor encoders CUI AMT103 2048 tick/revolution quadrature rotary encoders are fitted behind

the drive wheels.

Inertial measurement unit (IMU) An XSens MTi-G IMU, which is physically small, draws

very little power and has extremely low noise density: 80µg/
√
Hz and 0.03 deg /s/

√
Hz, has

been fitted to the center of the vehicle.

GNSS Two onboard Trimble NetR9 reference GNSS stations, which uses the platform’s cellular

connection for RTCM streaming corrections data, are mounted on top of the vehicle. Using

real time kinematic (RTK) correction in this way yields a typical location accuracy of σ <

10mm, when they have a fix.

Laser scanners Two SICK LIDARs, a LMS111 and LMS151, have been mounted to the robot,

which has an effective range of about 15 m with the surfaces involved in the competition.

One laser is articulated for 3D sensing.

Cameras Two Logitech c920 webcams are mounted on the robot in fixed positions. Two cameras

are used to provide greater visible area.

2.3 Electronic Design

Full schematics are available at: http://snipurl.com/29xtn67. An overview of the UGV’s elec-

trical systems is shown in Figure 2.2.

2.3.1 Communications

The primary method of communication with the UGV is via 2.4 GHz 802.11n WiFi, which is used

for system management, control, testing and development. An additional long-range WiFi link

is established with two Ubiquiti Picostations which can achieve more than 500 m range, line of

sight. The on-board laptop, control electronics, GNSS receivers and LIDARs are all connected via

Ethernet to an on-board switch, and are accessible over the WiFi link. The use of standard IP

protocols and interfaces allows remote testing and trivial extension and modification of the system.

http://snipurl.com/29xtn67

Hardware Design 5

Figure 2.2: Overview of platform wiring

2.3.2 Power Distribution and Usage

Two standard 12 V, 18 AH SLA batteries power the UGV. They are wired in parallel to provide

the main 12 V power bus which supplies the motors and most of the onboard equipment. In line

with the batteries is a 100 A thermal circuit breaker followed by a two-tiered array of blade fuses

for safe sub-distribution of power. Drive circuitry is separated from sensors and control circuitry,

so a large relay can cut off power to the motors during an emergency stop. The four drive motors

are driven by individual Talon SR motor controllers, which we have found to be extremely reliable.

Standard 120 A Anderson connectors are used for the power connections, allowing the robot to

connect to an external mains supply instead of the batteries. This allows the sensors and other

equipment to be run whilst stationary. This is useful during lab testing and prevents battery drain

when not in use.

Power requirements for components of the system are detailed in Table 2.1.

2.3.3 Control board

The control PCB (Figure 2.3) is our own design and interfaces between the control software and all

low level electronic systems: drive motors, safety light, panning laser, emergency stop and battery

management. It also provides 24 V and 5 V rails from high efficiency buck and boost converters

to the components that need them. It is housed in an IP67 polycarbonate enclosure with milspec

Ethernet jack to prevent damage and water or dust ingress.

Hardware Design 6

Component Power Current and Voltage Source
2 × SICK LMS111 18 W 2 × 0.75 A at 12 V Platform
XSens MTi-G IMU 0.4 W 80 mA at 5 V Laptop
Wireless Router 12 W 1 A at 12 V Platform
2 × Logitech C920 4.5 W 2 × 450 mA at 5 V Laptop
Trimble GPS Receiver 3.8 W - Internal
Control Electronics 1.5 W 125 mA at 12 V Laptop
Safety Light 6 W 500 mA at 12 V Platform
Laptop 35 W - Internal
Picostation WiFi Bridge 8 W 0.33 A at 24 V Platform
4 × Motors 720 W 4 × 15 A at 12 V Platform

Table 2.1: Power requirements of the components that make up the platform.

The control board uses a dsPIC microcontroller (MCU) connected to an Ethernet PHY. The MCU

runs a TCP/IP stack with a web server for diagnostics and a UDP server for control and status

messages. One of the foremost goals in the design of the UGV is flexibility and ease of development.

By using a network interface to the control electronics, instead of USB or similar, developers can

connect to the network, immediately check the status of the platform, independently develop and

test firmware and software without requiring a physical connection to the robot.

True quadrature decoding and hardware glitch filtering of the wheel encoders ensures low noise

odometry data for the drive control loop. The battery voltage is constantly monitored and operators

are warned if the battery runs low. The control board includes input filtering to mitigate against

EMI from the motors and transient voltage dips and spikes.

Figure 2.3: Control board in sealed poly-
carbonate enclosure (cover removed)

A custom UDP protocol interfaces the control board to its

driver on the laptop. This protocol is timestamped and

checksummed to ensure safe and in-order processing of

packets. The protocol is asynchronous, which interfaces

well with the software architecture described in Chapter

3.

2.3.4 Emergency stops

The UGV features two emergency stops, in compliance

with IGVC rules. There is an on board emergency stop

at the back of the robot and a fail safe wireless emergency

stop operable at a range of up to 100 m. Both devices

are wired in series and either one will bring the UGV to a

quick and complete stop. The wireless emergency stop is

implemented with nRF24L01+ ICs which utilise a simple

but robust handshaking protocol to mitigate interference

and fail safe. Most of the time the transmitter enters a

low power state, drawing only about 1 uA. This allows

us to gain in excess of 1000 hours of battery life from two

AAA batteries.

Hardware Design 7

2.4 Safety, Reliability and Durability

Component Cost Cost to Team Type

Custom platform $1,000 $1,000 Platform

SICK LMS111 $4,500 Loaned Sensor

XSens MTi-G $2,300 Loaned Sensor

Wireless router $80 $80 Assembly

Ethernet switch $8 $8 Assembly

2 x Logitech c920 $150 $150 Sensor

2 x Trimble NetR9 $41,000 Loaned Sensor

Frame and fasteners $300 $300 Assembly

Custom electronics $100 $100 Assembly

Laptop $850 $850 Assembly

Total $50,310 $2,480

Table 2.2: Costing for the project, if all of the components were
bought new. The majority (95 %) of the cost is sensors.

To ensure the safety of people work-

ing on or around the UGV, safe

working procedure, and risk manage-

ment forms were produced: http:

//snipurl.com/29dm898.

At previous competitions, the team

experienced reliability issues with

USB connections, in terms of con-

nector durability and signal integrity.

Moving to an Ethernet based con-

troller has greatly improved safety

and reliability of the platform. As

Ethernet is higher voltage swing and

fully isolated, it negates signal in-

tegrity issues. The robust and stan-

dard packet model ensures data integrity, wide compatibility and easy development.

All sensors and their drivers are able to cope with momentary connection loss and data corruption

caused by connector vibration, EMI or other data integrity issues. This has required modification

and bug fixes in existing open source drivers and careful component placement.

The control board uses a watchdog timer and careful fail-safe reset handlers to ensure that any

firmware bugs do not impact on the safety of the vehicle.

All structural members are fastened using high tensile capscrews, shakeproof washers and tapped

holes or locking nuts. Foam rubber has been placed in some joints, to protect sensors and damp

vibration. Extensive testing has proved the robot to be highly resilient to vibration and impact;

no damage has been caused driving at high speed over very rough terrain. Fluted plastic board is

used to form a shell around the vehicle, shielding it from rain and splashes.

An external frame provides the platform, sensors and payload protection against damage from

collisions and rollovers.

http://snipurl.com/29dm898
http://snipurl.com/29dm898

3. Software Design

This chapter provides an overview of the software design and integration that provides the UGV

with the ability to perform autonomous navigation.

The software systems that work together in order to provide this functionality are:

• Localization: determining the location of the vehicle in the world.

• Mapping: determining what the environment around the vehicle looks like, and where it is

safe to drive.

• Navigation: determining how to drive and control the vehicle in order to reach the desti-

nation.

Each software system is composed of several processes that each has a singular purpose. Interpro-

cess communication is handled with Robot Operating System (ROS). ROS also provides a number

of standardised message formats to disseminate data for processing, allowing a high degree of

modularity. Numerous open-source drivers have already been developed for the ROS architecture,

allowing us to trivially integrate new sensors into our software systems. However in many cases we

have needed to improve the performance or robustness of these drivers to produce a reliable and

responsive system. Although a number of open source ROS software packages and algorithms are

already available, we have found these to deliver unsatisfactory performance and so have developed

our own systems which fit into the same flexible architecture.

ROS uses socket based communications, allowing rapid and extensible modular development and

debugging across the platform’s internal network and WiFi. This model also removes the need

for an user level event based system to poll for changes, as required in shared memory systems,

and has lower-latency than message brokering systems [1]. For system management, integrated

monitoring and control software was developed to watchdog process and system states, and is

covered in Chapter 5. A CPU performance budget is used to ensure that the vehicle can detect

and replan in under 250 ms, while offering over a 3 hour single-charge run time.

3.1 Localisation

The vehicle performs localization using an Extended Kalman Filter (EKF), which fuses the sensor

data calculated by the IMU (estimates angular velocity), motor encoders (estimates linear velocity)

and GPS (estimate position in the world).

One of the key concerns of the approach to localization used in a recent competition was that the

vehicle needed to be driven around for approximately 30 seconds in order for an accurate estimate

of the platform’s heading to be obtained. This problem has been solved through the addition of a

second GPS unit; by combining measurements from the two GPS sensors fixed at different points

on the vehicle, heading determination is achieved [2].

8

Software Design 9

3.2 Mapping

An overview of the approach to mapping in this year’s entry is illustrated in Figure 3.1 below.

Figure 3.1: Overview of the approach to mapping.

The overall approach to mapping utilizes an occupancy grid to formulate a map of the environment

that determines whether or not certain areas of the areas occupied by obstacles or free space. This

occupancy grid is filled in by observations of the barrels, fences, and lines, as detailed in Sections

3.2.1 and 3.2.2.

A key innovation in this approach is in the use of semantic identification of obstacles within the

sensor data that is collected. This means that individual barrels are detected in the laser data,

and similarly lines are detected in the camera data. The advantages of this approach are two-fold.

Firstly, this has resulted in a significant reduction in the amount of spurious data that is added

into the map, such as areas of grass that appear quite white, or laser scans that hit the ground.

The second advantage is targeted at an issue that arose in a previous year’s competition, which

was that under certain lighting conditions (such as direct sunlight) barrels would appear to be

white, meaning that they would be detected as being lines, and erroneously added into the map.

As explained in further detail in Section 3.2.3, by combining the information collected from the

laser and camera, we are able to avoid this problem.

3.2.1 Obstacle Detection

Obstacles are detected using computational geometry to identify geometric objects from laserscan

data as discrete entities. A two-stage process allows barrel and fence detection to be performed

simultaneously. Collected laser data is firstly segmented into regions of points in close proximity

to one another. Regions are then classified into course elements such as a barrel, fence, ramp, or

the ground. As mentioned previously, the advantage of this process is the absence of erroneous

laser data during map generation. This process is illustrated in Figure 3.4 below.

Angle-stamped scans from the panning LIDAR are processed individually to approximately identify

complex obstacles which are not clearly present in the single horizontal plane of the front-facing

LIDAR. This method is faster than identifying objects in a 3D point cloud and compensates for

the vehicles’ rapid movement during the course of the pan.

Software Design 10

3.2.2 Line and Pothole Detection

Robust and fast line detection is achieved by the use of a Bayesian particle filtering image processing

methodology. A number of particles are distributed across the image, and the likelihood of a particle

being on a line or pothole is obtained from an structure-specific objective function utilizing a

trained Bayesian classifier [3]. The variance of the best solutions is used as a confidence measure

to eliminate false positives.

This process is illustrated in Figure 3.2 below.

(a) Image collected from camera. (b) Line pixels and lines detected.

Figure 3.2: Line detection.

Note that two cameras have been mounted on the vehicle at slightly different locations in order to

provide a greater field of view, allowing the robot to see lines next to itself.

3.2.3 Semantic Inference

As mentioned previously, the detected barrels, lines and fences are combined together in a further

post-processing stage in order to eliminate erroneous detection of lines. The basic concept behind

this is that at any point in time, we should not be able to observe lines behind a physical obstacle,

as vision should be occluded by that obstacle. Unclassified persistent objects, such as flags, are

also treated as obstacles to be avoided. Flag directionality can be identified with image processing.

3.3 Navigation

The autonomous navigation performed by the vehicle has a hierarchical structure with three lev-

els; goal management, path planning, and path following. These components are detailed in the

following sections.

3.3.1 Goal Management

A high-level waypoint module is responsible for managing the progress on the list of objectives

that the vehicle must navigate through. As soon as the current objective is completed, the next

waypoint is issued to the path planning subsystem.

Software Design 11

3.3.2 Path Planning

The goal of path planning is to determine a suitably optimal path through the environment that will

allow the robot to safely reach a destination waypoint from its current position, while minimizing

an objective function involving items such as distance and risk.

Figure 3.3: A photo of a miniature course with lines, barrels and flags.

Figure 3.4: Sensor data, costmap, detected hazards, and path plan.

Software Design 12

The path planning makes use of the occupancy grid generated at the mapping stage. Celebrated

graph-based planning algorithms can then be employed to find the shortest path between waypoints

on the map. A dynamic programming approach applied by the team utilizes evolutionary particle

swarm optimization to find a fast and smooth path and speed profile through the map [4]. An

attraction heuristic from a modified version of A* is applied to take advantage of the large areas

of open space present in the IGVC environment. An example of the paths generated through the

initial path planning stages is shown in Figures 3.3 and 3.4.

Just knowing the path to goal is insufficient, the robot must also be able to follow this path

accurately if it is to reach the goal. The approach to path following is detailed in the following

section.

3.3.3 Path Following

The following of the paths generated in the previous stage of the navigation process is governed

by the application of sliding mode control, which is commonly used when controlling systems

with nonlinear dynamics [5]. To support high speed maneuvering, a electronic stability control

(ESC) system was added which uses the difference between the vehicle’s actual behavior and the

commanded behavior to determine when and where counter-torque should be applied to stabilize

the vehicle. This ESC system counters the effect of body roll, which can lift the inside tire off the

ground causing loss of traction during fast turns.

3.3.4 Drive control

A low level control loop for the vehicle’s drive wheels runs on the laptop at 100 Hz or more.

The low latency and low overhead of the BSD socket architecture in conjunction with our UDP

message protocol makes it possible to achieve high performance, stable and real time control in

software without a real time . Typical round trip control loop latencies over the network from

the laptop to the control board are on the order of 1 millisecond or better. Having a high level

controller implementation allows straightforward testing, development and adaptive tuning without

cumbersome firmware modification.

4. Testing

The chapter outlines the team’s approach to the testing of autonomous navigation of the platform.

This testing involved three stages; simulation, small-scale real-world testing, and large-scale real-

world testing. The following sections detail each of these stages.

4.1 Simulation

A new simulation environment has been engineered specifically for development and testing for

IGVC. This simulation has a number of features that have been critical to the development of our

teams solution:

• Rapid testing: the simulation is capable of being run at up to five times faster than real-

time and in parallel. To facilitate repeated and rapid testing, the team has rented several

cloud computer instances to run many iterations of the simulation simultaneously.

• Logging and log analysis: as mentioned above, we are able to rapidly iterate over our

simulation. Unfortunately this results in too much data than can be easily analyzed manually,

and so we have developed several tools to automatic analyze and collect statistics regarding

the performance in a simulated run of the competition. These statistics, which include average

speed, localization error, and proximity to obstacles, allow for quick tuning and verification of

parameters to determine which combination of these parameters optimizes the performance

of the system as a whole.

Unfortunately, a simulation can only come so close to replicating real-world performance. One of

the shortcomings to our preparation for last year’s competition was that we felt that we did not

conduct enough real-world testing. As such, there has been a much heavier focus this year on

conducting such tests, as detailed in the following sections.

4.2 Small-Scale Real-World Testing

In order to verify and test the performance of the system in the real-world, the team purchased a

number of correctly-sized bins and organized the marking of an approximately 60 foot long lane

of white lines on the UNSW campus. This setup, seen previously in Figure 3.3, has been used to

analyze the performance of the integrated system with actual lines and barrels.

4.3 Large-Scale Real-World Testing

It was not practical or feasible to be able to mark out enough lines or acquire enough barrels to

be able to recreate the entire IGVC course. However, the team still felt that it was necessary that

13

Testing 14

we do a full-scale test of the system with the actual platform in the real world, rather than in

simulation.

In order to accomplish this, a tool was developed that allowed the user to mark out a virtual

competition course in the real-world. This tool is shown in Figure 4.1 below.

Figure 4.1: Large-scale testing was facilitated through a tool that allowed virtual courses to be
marked out in the real world.

By using this tool, we have been able to mark out, virtually, a full-sized obstacle course that the

robot is able to attempt to navigate.

4.4 Failure Testing

Extremes such as vehicle rollover, low-battery operation, connectivity loss, power loss, loss of

sensors, and abnormal process termination are intentionally induced during testing to ensure that

the entire system itself is fault tolerant, such that it recovers automatically, or that safeguards and

monitoring systems are in place to prevent or to alert the operator of system errors.

As a policy, to guard against intermittent component or system availability, automatic recovery

from disconnections through distributed stateless design and fast reinitialization has been imple-

mented wherever possible. In addition, almost all open-source low-level device drivers and software

used by the team has been reworked to operate at the team’s specifications.

As the vehicle dynamics for the platform change with every iteration, a potential for rollovers and

vehicle spin due to loss of vehicle stability was identified during design and testing. To resolve this

problem, an electronic stability control system was added to regulate vehicle dynamics such that

it was always within safe operating bounds.

5. Integration Management

(a) Process control interface. (b) Sensor feedback on a tablet.

Figure 5.1: Browser-based remote monitoring and control system for the ground vehicle.

Unfortunately, most robotic platforms that are developed for purposes such as tasks like IGVC

require an extraordinarily in-depth knowledge of the inner workings of the system to be able to

operate it. At best, many systems will only provide an untrained user with remote operation using

a joystick. For commercial viability, users of autonomous systems need the ability to remotely mon-

itor the system without having an intricate understanding of the implementation details. For this

problem, one of the innovations this year is the introduction of an intuitive web-based user interface

that is operable on any network-enabled mobile device (phone or tablet), laptop or desktop.

By offering a web-based interface (as shown in Figure 5.1), a variety of tools such as process controls;

waypointing, map and database visualization and editing; sensor feedback; audible system health

monitoring; data logging and playback; and touch-based drive command systems are available. This

simplification of several components such as the startup, diagnostics and drive system, enhances

the vehicle’s overall deployability and usability, and complements existing command-line processes

or other advanced full-feature visualization and simulation capabilities. In a casual usability test,

users reported ease of use with the new graphical system than the previous system.

15

6. Conclusion

In summary, the team has proposed a custom-built UGV based on commercially available com-

ponents. The design also adapts existing hardware, software, and algorithms to autonomously

perform localisation, mapping, and path planning. The system we have developed is highly modu-

lar and based on standardised and proven interfaces to allow easy and rapid addition of new sensors

and capabilities. A significant amount of improvements have been made based on the lessons that

we learned from the Australian AGVC competition, as well as based on the significant amount

testing that has been conducted by the team throughout the year.

Overall, the theme of development has been to have a versatile and expandable system with a

robust back-end with a user-friendly front-end. This has resulted in a system that has been proven

through extensive simulation and real-world testing to be able to reliably complete the challenges

that IGVC poses, whilst still being able to be controlled by anyone, anywhere in the world.

Bibliography

[1] G. Hohpe and B. Woolf, Enterprise integration patterns: Designing, building, and deploying

messaging solutions. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2004.

[2] L. Lau, P. Cross, and M. Steen, “Flight Tests of Error-Bounded Heading and Pitch Determi-

nation with Two GPS Receivers,” IEEE Transactions on Aerospace and Electronic Systems,

vol. 48, pp. 388–404, Jan. 2012.

[3] M. J. Jones and J. M. Rehg, “Statistical color models with application to skin detection,”

International Journal of Computer Vision, vol. 46, no. 1, pp. 81–96, 2002.

[4] V. Miranda and N. Fonseca, “Epso-evolutionary particle swarm optimization, a new algorithm

with applications in power systems,” in Transmission and Distribution Conference and Exhibi-

tion 2002: Asia Pacific. IEEE/PES, vol. 2, pp. 745–750 vol.2, Oct 2002.

[5] J. Taghia, S. Lam, and J. Katupitiya, “Path following control of an off-road track vehicle

towing a steerable driven implement,” in 2015 International Conference on Advanced Intelligent

Mechatronics, IEEE/ASME, 2015.

16

	Contents
	1 Introduction
	1.1 Team Structure and Design Process
	1.1.1 Time Management
	1.1.2 Task Tracking
	1.1.3 Project Failure Points and Resolution

	2 Hardware Design
	2.1 Mechanical Design
	2.2 Sensors
	2.3 Electronic Design
	2.3.1 Communications
	2.3.2 Power Distribution and Usage
	2.3.3 Control board
	2.3.4 Emergency stops

	2.4 Safety, Reliability and Durability

	3 Software Design
	3.1 Localisation
	3.2 Mapping
	3.2.1 Obstacle Detection
	3.2.2 Line and Pothole Detection
	3.2.3 Semantic Inference

	3.3 Navigation
	3.3.1 Goal Management
	3.3.2 Path Planning
	3.3.3 Path Following
	3.3.4 Drive control

	4 Testing
	4.1 Simulation
	4.2 Small-Scale Real-World Testing
	4.3 Large-Scale Real-World Testing
	4.4 Failure Testing

	5 Integration Management
	6 Conclusion

