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Abstract— We present LEO10 an autonomous ground 

vehicle developed by the KARR team from the National 

University of Singapore (NUS). LEO10 is a lightweight, 

modular, power efficient intelligent autonomous robot 

running on Robot Operating System (ROS). This robot 

is National University of Singapore’s first entry at the 

Intelligent Ground Vehicle Competition (IGVC) in 

collaboration with Data Storage Institute, A*STAR. 

LEO10 is a completely in-house designed robot from 

scratch by three undergraduate students. 

Keywords- ligtweight, modular, power efficient, ROS,  

IGVC 

I. INTRODUCTION 

The team members of KARR got together in early 

August 2009 to brainstorm ideas on how to design 

and create a vehicle that will stand out at the 

competition. We used a systems based design 

approach to build the autonomous vehicle from 

scratch.  

The software platform we will be using for the robot 

is Robot Operating System (ROS) developed by 

Willow Garage Inc. which will run on Ubuntu and 

Arduino for our motor control.  

After thorough research from previous year’s entries 

at IGVC, it was decided to build a lightweight, 

modular and low power consuming robot for IGVC. 

The advantages that Robot Operating System (ROS) 

offered over Stage and LabView confirmed ROS as 

the software running on the robot with Arduino to be 

used for Motor Control. 

The objectives of the Robot were finalized that led to 

the subsequent stage of selection of components and 

LEO10 was successfully fabricated completely in-

house from scratch in 1 semester to compete in IGVC. 

II. DESIGN PROCESS- ITERATIVE DEVELOPMENT 

The agile iterative development process was used to 

start the KARR team and build the robot, LEO10 as 

an effort to start an undergraduate student IGVC team 

in NUS and to ensure continuity of the team. 

Figure 1.  The 

Team

 

We brainstormed over the various possible features 

that could be incorporated in Leo10 along with the 

basic capabilities required to compete at IGVC. The 

priority level of all the features was evaluated after 

which the list was cut down. The tasks were thus 



divided into 3 segments with each individual 

responsible for the development of a particular set of 

features for LEO10. The components were chosen to 

suit our needs for the competition after ensuring their 

compatibility and performance with ROS. The 

challenges were prioritized based on the sensory 

requirements and the project was planned in the 

direction of completing the specific milestones at 

specific deadline. The software was developed and 

tested on the Pioneer P3DX before it was migrated to 

our own robot, LEO10. 

Figure 2.  Agile Development 

Process

 

III.  DESIGN OBJECTIVES 

The task of building the robot from scratch required 

clear design goals which were: 

A. Lightweight:  

To be able to move smoothly, decrease the work 

done by the motor and reduce the power consumed 

by the drivetrains, it was essential to decrease the 

weight of the robot. We prepared a weight budget of 

the mechanical structure, drivetrains and other 

hardware components to optimise the weight of the 

robot to 23 kg which would be considered as one of 

the lightest vehicle at the competition. The drive 

trains and frame structure will be covered in detail in 

the mechanical design section 

 

B. Compact: 

 The idea behind making a compact and modular 

robot was the ease of transportation and storage. 

Moreover, modularity of the structure offers the 

possibility of customizing the dimensions of the robot 

subjected to the hardware or task requirements of the 

end users. 

C. Power Miser 

The design process also included the power 

budget of the robot which we think is an essential 

part of the process in the design as the robot should 

have a good amount of battery life to be 

autonomously running.  

 

 

 



IV.  LEO10 SYSTEM OVERVIEW 

From the point the robot is switched on the three sensors i.e. LIDAR, Camera and the IMU/GPS system start to poll 

data simultaneously. The navigation algorithm in ROS takes this information and plans the path accordingly. In the 

autonomous challenge the robot will be continuously given pose information as its goal to move forward where as in 

the Navigation challenge the waypoints will determine the robots goal. Figure 3 shows the complete system diagram 

of LEO10.  

Figure 3.  System overview 

 

V. MECHANICAL SYSTEMS 

 Apart from being lightweight and compact one 

important feature LEO10’s mechanical design is that 

all the drivetrains are independent of each other and 

is a four Wheel Skid Steer Mechanism. Independent 

drive trains with individual suspension that will add 

to the all terrain capability of the robot. However for 

this year, we decided to go without suspension for 

simplicity of the first design of the robot.  

TABLE I.  MECHANICAL DATASHEET 

Length 1.10 m 

Width 0.64 m 

Height 1.49 m 

Weight(without payload) 23 kg 

Ground Clearance 0.05m 

Payload Capacity 20 kg 

Wheel Diameter  8 inches 

Maximum Speed(80% Efficiency) 1.85 m/s 

Operational Speed  5 m/s 

 

A. Methods of Design 

LEO10 was conceptualized and designed in detail in 

Solidworks 2009. Each component and assemblies 

were confirmed as non-interfering and constrained 

using the computer aided design (CAD) program. 

Simulation Study features in the program was used to 

do the Finite Element Analysis (FEA) so as to ensure 



that the structural parts maintain a factor of safety of 

at least 5 under worse cases of loading. 

B. DriveTrain Design 

Leo10 has four independent drive trains each 

powered by light weight Dynamixel-RX 64 motors. 

The main feature about this design is the modularity 

of drive trains which makes replacement of parts and 

assembly of the design simpler. There is a motor 

plate customized to hold the Dynamixel motor which 

mounts onto the coupling block on which the weight 

of the robot actually acts. The Oldham coupling 

inside the block ensures transmission of power from 

the motor shaft to the wheel shaft. The wheel shaft is 

well supported by the flanged ball bearing on the C 

bracket on the other end of which the encoder plate 

housing the US Digital E2 Optical encoder is housed.  

 

The power requirements for motors were calculated 

taking the scenario that the vehicle is climbing the 

ramp at an angle of 15°. The power required for each 

motor is 24.2 W. 

All the parts were fabricated from AL-6061-T6 

aluminum except for the shafts which were fabricated 

from 403 Stainless Steel. 

C. Profile Body Design 

The chassis was fabricated from Item® profiles 20 

mm by 20 mm in dimension. These profiles are light 

weight and provide the option of mounting at desired 

points. Hence it is easier to adjust the heights of the 

LIDAR and the camera when mounted on these 

profiles.  

 

The weight distribution was done equally in the front 

and the back frame and the drive trains were mounted 

at a ground clearance of 5 cm. The centre of gravity 

of vehicle is towards the centre of the robot and low.     

The total weight of the chassis is about 7 kg. 

D. Enclosure  and Sensor Mounts 

The front and the back frame were enclosed with 

scratch resistant plastic panels sealed with rubber 

lining on the profiles. All the circuits and Unibrain 

camera are protected inside IP66 containers to 

prevent water from damaging the components. The 

laptop will be placed in a safe enclosure that will 

mount onto the back frame. For easy access of the 

components inside the back frame is a hinged panel. 

 The Hokuyo LIDAR is mounted to Dynamixel AX-

12+ motor to provide 3D scanning. It is protected by 

the protrusion of the panel on top of it. 
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VI. ELECTRONICS SYSTEM

 
 
 
 

A. Wireless & Hardware Emergency Stop.  

LEO10 is installed with a wireless relay board with 

an Arduino-Mini Pro microcontroller and an AR6200 

DSM2 receiver to enable remote emergency stop 

capability. Spektrum DX6i receiver has 6 different 

RF channels, amongst which the gear channel is 

monitored for the emergency stop (figure 1.1); since 

it is has only two states.  The wireless receiver relay 

board is connected in series with the main relay 

power board to stop the current flow to the motors 

when the e-stop button is pressed.  

For the hardware E-Stop, a push button is placed on 

the back of the robot connected to the main power 

board, which shuts off all power/electronic operations 

on the robot. Unwinding the pushbutton will reset the 

robots systems and return to normal state.   

B. Manual Control 

The AR6200 DSM2 receiver, used for the wireless 

emergency stop will also be used to manually drive 

the robots with a joystick. The AR6200 DSM2 has 6 

different channels which are usually used as receivers 

on RC aircrafts. In our case we are going to use only 

2 channels to drive the robot. The rudder and throttle 

joystick on the DX6i transmitter is used to control the 

direction and the speed of the robot, respectively. An 

Arduino-Mini Pro microcontroller is used to process 

the PWM signals from the receiver and output the 

desired controls to the global motor control board.  

C. Drivetrain Control System  

Each of the 4 drivetrains on the robot is equipped 

with Dynamixel’s RX64 motors, which can handle 

6.4 N/m with at a maximum RPM of 114 at max 



operating voltage. The motors have an internal 

controller and driver which can be controlled by 

packet communication through a bus, supporting 

RS485 network.  

Our motor control system consists of 2 layers, 1 

global control board and 4 custom mini-boards for 

each drive train. The global motor controller is an 

Arduino Mega board with an Atmel 1280 chip, which 

is programmed to manage the communication 

between the path planning algorithm on the computer 

and each motor control board as well has handle the 

link between the wireless transmitter and receiver for 

manual driving.   

 

Each mini control board consists of an Arduino mini, 

RS 485 breakout chip and other power modules. The 

micro-controller gets speed values from the Global 

motor control board and converts it into RX-64 

communication packets to drive the motor. It takes in 

encoder values, processes the data and sends it to the 

global motor control to carry out the kinematic 

modelling for Dead-Reckoning. Communication 

between the boards is handled by I2C. Each board 

also carries its own power regulation modules.  

 

 

Figure 4.  Circuit board inside the IP-66 casing.  

VII.  POWER SYSTEMS 

A. Power Budget 

One of our design objectives was to reduce the 

overall power consumption. Literary research 

suggested that drivetrains consume up to 60% of a 

robot’s power capacity. With our innovative 

drivetrain design we have reduced the overall power 

consumption to 39% and still retained a sufficient 

maximum torque limit to traverse challenging 

terrains. The total power budget is given in the table   

Figure Pie Chart for Power Consumption in Watts  

 

The total power requirement of 90.59W is at 

optimized operation of the robot running at the speed 

of 0.5m/s. This makes our robot one of the most 

power efficient designs in the competition.  

B. Power regulation and distribution 

To go with the design objective of a light weight 

robot high power Li-Po batteries of 25.9V 10 Ah and 

14.8V, 7Ah were used at a weight budget of 2.5kgs. 

Total Battery Run time for Battery pack is 2h 38 

minutes at 25.9V and 6h 14 minutes at 14.8V.  The 

battery voltages are stepped down to 18V, 12V and 

5V respectively by Anyvolt 3 DC-DC converters and 

25W Step down adjustable switching regulators. 

 

Output Power to 
the motor  

25.9V to 18V 
DC-DC converter  

RS485 Breakout board for 
RX64 Communication  

Encoder 
Input 

Arduino Mini 
Microcontroller 



C. Battery Management 

Depleted batteries can be replaced easily without 

affecting the robots state as the laptop has its own 

internal battery and thus the software process keep 

running.   

VIII.  COMPUTING SYSTEMS: 

A. Software: 

LEO10 uses Robot Operating System, or ROS as its 

software platform. ROS is an open source, 'meta 

operating system', and runs on Linux.  

The basic motivation behind using ROS was: 

• Open Source, hence lesser costs for software 

• Stable and robust platform. 

• Provides integration of OpenCV, Player/Stage 

and Gazebo under one package 

• Well supported libraries for common 

algorithms.   

• Supports both C++ and Python code. 

As stated above, ROS behaves like a meta-operating 

system, where the 'core' provides the basis for all 

other 'packages' to run on it. The core handles all the 

communication processes, while packages are user 

written programs that run as separate 'nodes', 

connected to each other, forming a network. 

The nodes running the navigation algorithm on our 

robot are given in figure 5. 

 
Figure 5.  ROS Nodes Overview 

 
 
The encircled names are the 'nodes' and the arrows indicate the message names along with the direction of 

communication that these nodes use to compute tasks.  

 

 

 

 



B. Lane Detection 

Lane detection is done via a fire-wire camera 

(Unibrain Fire-i Board Pro).  

 

ROS uses the cameradc1394 node to initialize the 

camera, and publishes the images under the /Image 

message. For image processing, we use OpenCV 

which takes in processed images in the ipl format, 

done by the CvBridge node in ROS. 

  

Rather than relying on the visual information 

independently, the image processing is incorporated 

into the decision making process. This is done by 

converting the lines detected into laser scans, in a 

format that can be understood by ROS as a laser 

sensor. This means that the lanes detected appear as 

solid walls i.e. obstacles to the robot, and so the robot 

will try to avoid the side lanes.  

 

C. Pose Estimation  

For estimating the pose of the robot, we use EKF 

(Extended Kalman Filter). This feature has been 

implemented as the robot_pose_ekf node in ROS. 

This node takes in combined information from 

various sensors: 

• 2D Pose: Wheel odometry gives the ground 

pose of the robot. 

• 3D Pose: An IMU records information about 

the roll, pitch and yaw of the robot. 

• 3D Position: A GPS sensor gives information 

on the position of the robot in the 3D plane.  

 

 

 

D. Obstacle Avoidance & Navigation 

 

Avoiding obstacles is the fundamental task of 

LEO10, is achieved using a Costmap based 

algorithm. ROS already has an implementation of the 

Costmap2D algorithm. Briefly, the algorithm can be 

explained as follows:  

• Upon receiving real world obstacle information, 

the algorithm builds a 2D occupancy grid, where 

each cell that is known to have an obstacle is 

associated with a cost. The cost is maximum for 

obstacles near the robot (known as ‘inflated’ 

cost), and reduces with distance. Cells can be 

marked as ‘occupied’, ‘free’ or ‘unknown’ based 

on the information available about them and the 

costs they acquire. A total of 255 values are used 

for costs, grouped under the 3 categories stated 

above. Upon performing an initial run, a global 

path is planned, based on the lowest cost path 

available at that moment.  

• As the robot moves along the path, there is a 

local plan that will iterate through the sensor 

information and plan velocity commands to drive 

the robot locally. The significance of the local 

path lies in its property; the global path can be 

planned with relatively inadequate information 

due to distance limitations of sensors (LIDAR 

for example). The local path works as a 

corrective measure: as the robot acquires 

information while moving close to the goal, the 

local path will adjust itself, avoiding obstacles 

while staying close to the global path. An 

example is shown in the simulation discussed in 

the following section. 

• In cases where a path is not viable, or the robot is 

blocked, a 'recovery' operation is performed. 

This means that the robot will make a full turn of 



360 degrees, and try to clear out its space by first 

maintaining a clear distance from any obstacles it 

is too close to, and then planning a path again. In 

Figure 6, the global path is shown in green, while 

the local path is shown in yellow. The orange 

area represents the inflated regions that have 

been assigned a cost. The red arrow marks the 

pose of the robot, and will travel with the 

rectangular 'footprint' of the robot. 

 

 

 
Figure 6.  Obstacle Avoidance Solution. Orange areas represent 
the inflation radius of the obstacles, the thick green lines represent 
the while lanes.  

 

 

 

D. Simulation 

To test the algorithm, we used the gazebo 

implementation in ROS. The robot was provided with 

a map, and then given a goal to achieve in the map. 

Examples are shown in the pictures below: 

 



 

Figure 7.  Simulation Environment.  

 
Figure 8.  Simulation Environment 

 



Referring to figure 7 the thick green lines represent the walls 

detected by the robot, and the blue regions represent the costs 

assigned to these walls. The global plan passes through the 

wall because information about the front wall is not known at 

the starting point of the simulation. On reaching close to the 

wall, the local plan curves around the wall.  

 

In the case of figure 8, the robot has a clear way to the goal, 

and thus the local plan coincides with the global plan. 

IX.  CONTROL SYSTEMS &  SENSORS 

The software development cycle involved a bottom up 

approach, i.e. design of the motor control was done first and 

the path-planning algorithms were implemented at the end of 

the development cycle.  Each control system is described 

below in detail:  

A. Motor Control System 

1) Mini-Control Board :  

Arduino mini pro microcontroller is programmed to perform 

the PID control of the Dynamixel motors. Since the 

Dynamixel has its own controller the ramping up of to the 

desired setpoint is done smoothly and the arduio’s job is to 

maintain the output through feedback from the encoder values. 

The flowchart below shows the control algorithm 

implemented. *GMC = Global Motor Control board.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.  Flowchart of theMini-control board 

 

2) Global Motor control:  

GMC consists of only an 8 bit Arduino Mega controller 

which is responsible for the following tasks: 

• Handling encoder information and sending the 

odometry values to the computer. Encoder values 

requested at a frequency of 50Hz. 

• Communicates with the laptop to get the speed 

values for individual motors and passes the 

information over the I2C channel, where all the 

motor control boards are connected to the same 

bus.   

• When set to manual control mode, it receives speed 

values from the Wireless control system and 

performs inverse kinematics to set individual motor 

speeds for movement.  

 

 

 

Start

Receive Encoder Inputs (Interrupt)

Increment  encoder count

Pid(loop) every 
55 ms

Calculate Speed

PID Input

Output speed 
to motors 

Refresh 
encoder 
values 

Input Value = Individual 
Speed from GMC*

Speed Ramp (Divide the 
value into 10 intervals)

PID Setpoint

Read Encoder counter



B. LIDAR System – Obstacle and Ramp Detection 

Fixed single line LIDAR’s are unable to differentiate obstacles 

from elevated paths such as ramps. To overcome this 

limitation LEO10 is installed with a tilting LIDAR mount , 

controlled by an AX-12 motor which rotates the Hokuyo 

UTM-30 LX  (30m, 270° scanning range) in the Y axis 

allowing it to take multiple scans, and generate a 3D point 

cloud. We then use ROS’s point cloud library to distinguish 

obstacles from the path.  

 

Figure 10.  LIDAR mount 

C. Camera 

The onboard camera used is a Unibrain Fire-i Board Pro. The 

lens used is a fisheye 2.1mm with IR coating. The camera is 

powered by the 1394 firewire port, which takes a picture at a 

frequency of 15Hz. The picture is then processed with 

OpenCV architecture as discussed before. The lane detection 

algorithm can be best explained diagrammatically: 

 

Figure 11.  Lane detection algorithm 

The images are obtained and processed, to remove any barrel 

distortion. Processing of the information is done via the well 

known Hough Transformation. Hough Transform gives us the 

lines in the (ρ,θ) format, where rho describes the perpendicular 

distance of a line, and theta is the angle of rho in relation to 

the pole. 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.  Hough transform example 

Figure 12 shows the results of the lane detection algorithm on 

a sample image. The red line indicates the line detected by the 

algorithm. The rho and theta values are explained in the 

diagram. The se values are then passed to the navigation stack 

to constrain the final path.  

 

D. IMU/GPS/Gyroscope 

To get the inertial accerelation and the position data, LEO10 

uses the Landmark 20 IMU/GPS module. Although the IMU 

provides orientation and the vehicles angular velocity, the 

stability of the gyroscope by CruizCore XH1010 was 

significantly better i.e. 10°/hr compared than to the IMU 

which was 30°/hr. ROS interfaces with the devices through the 

USB channel/extracting the data serially. We use an Extended 

Kalman Filter node to fuse the odometry values from the 

encoder, orientation data from the CruizCore gyroscope, 

acceleration and position data from IMU/GPS module  
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For Pose Interpretation, the node uses ‘relative’ 

difference in information of these sensors, and updates the 

Kalman Filter parameters. Over time, the covariance in the 

odometry data will increase and grow out of bounds. Hence 

the node measures difference in this covariance over time 

(Covariance Interpretation), and uses the information to 

dynamically adjust the measurements as well as maintain 

minimal noise to accurately determine robot position and pose 

at any given point in time. 

 

 

Figure 13.  Example of EKF , source: www.ros.org 

X. ESTIMATED PERFORMANCE 

Parameters Estimated 
Performance 

Test 
Performance 

Speed 0.5m/s 0.45m/s 
Ramp climbing Climbs at 

0.3m/s 
Climbs 

successfully 
with varied 

speed 
performance 

Reaction times of E-
stop 

0.1s ~0.5s 

Battery Life 2h 38mins ~2h 
Distance obstacles 

detected at  
3m ~3m 

Waypoint accuracy Tolerance 
0.1m 

Tolerance 
0.25m 

 
 

XI.  CONCLUSION 

 
The development of LEO10 from scratch was a challenging 

task for the 3 member undergraduate team. The aim behind 

LEO10 is to make it more than a successful all terrain robot 

with navigational capabilities, to make it a stable platform for 

robotics research and applications in future. Effort has been 

made to incorporate latest hardware, software and mechanical 

design and come up with a robot will set high standards in 

IGVC in future. There are many design features that have been 

planned to be implemented in the coming future versions of 

the robot. 
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