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I. Mechanical Design

The base is from the Ranger X model wheel chair from
Invacare’s Storm series wheel chairs. The wheelchair
base provided our team with a rugged base equipped
with suspension and motors. The suspension system
will help to stabilize the upper frame unit to reduce
noise in sensor values, which is a desirable quality for
an outdoor robot. Also, since it is a wheelchair base
designed for patient care, the base and motors are
manufactured so that there is little if any room for
failure. The wheelchair base also proves capable of
climbing over or through most obstacles such as ramps

or sandpits, as disabled users require the power chairs

to do such tasks daily without fail.

Figure 1 - Partially constructed Harlie
used for testing mechanical structure and
aluminum framing. Designing a method for mounting  Wiring against vibration damage.

The frame was designed and built using 4 cm square

the frame to our base was one challenge previous teams had to overcome. As manufactured,
the base was sloped down towards the casters. Using a simple mount would cause our frame
to also lean at this angle. To overcome this problem our team developed custom mounts that
would allow us to level the frame on top of the sloped base. Having a level frame made

mounting the LIDARs easier since they were required to be mounted parallel with the ground.

Previous teams had also attempted a vertical plane approach but wire routing between the two
bisections of the robot was difficult and components were able to become loose and fall from
the central vertical Plexiglas wall, causing damage to several components. This year, we
returned to the more compact horizontal shelves which are more difficult to access but yield

more reliable robots that need to be serviced less often.
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Figure 2 - Electrical System Block Diagram
will be regulated at the destination from the 13.8V power. Our power redesign focused on

distributing the unregulated 24V from the batteries as well as a regulated 13.8V level. We then
used 7805 5V regulators on a custom designed pcb to regulate 5V on site and used a special
24V regulated power supply for the LIDAR. A low pass filter was constructed using a 1 ohm
power resistor, a diode, and a 10mF capacitor to protect the cRIO from sudden drops in voltage

from the motors.

The format for the power also set and
followed a strict color safety code to avoid
the confusion and hazards of previous
designs. This method was simple but has
proven to be the single most effective

safety and reliability change this year. We

) [ty

simply mapped voltages or respective levels 1 W e
5 5
to a key, such that 24V was red, 13.8V was

blue, 5V was grey, and ground was black.

Signal wires were unique wiring patterns Figure 3 - New main shelf and color system



based on the spare wire at our disposal, but were not
allowed to be solid color unless representing a signal

ground.

We also added some maintenance improvements this year.

This includes the use of colored, one way power
connectors to connect each shelf or component to the
central power generation on the lowest shelf. These
connectors add a safe, color coded, and removable way to
easily debug power or signal issues between shelves by
quickly and reliably isolating problems. We have also
added larger power distribution blocks to feed the more
power hungry components individually. These blocks can
handle significantly more amps than the smaller blocks
which makes them more suitable for splitting power off to

the motors and the computer.

Figure 4 - Safety and Reliability
Additions to Power Distribution

We also put our breakers to better use. We kept the 120A thermal breaker as a main power

switch and safety, but also added 10A
breakers to the secondary sensor shelf.
This allowed for easy powering of
components as well as safety in case
something were to short, but not trip
the main robot breaker. We also added
brightly colored indicator LEDs to show
the current status of each shelf. If 24V
and 13.8V are not present at the shelve,
then these LEDs will be disabled, quickly
letting us know we've forgotten to

switch something back on after maintenance or testing.

24V and 13.8V Active:

Figure 5 - Shelf Power Indicators



While we did add a large inverter and modern computer to Harlie, we still achieve roughly 3

hours of runtime from our set of 2 year old Optima Blue Top batteries.
lll. Safety

A number of additional safety features were refined or added this year. Harlie features three
emergency stop actuators: a push button, a wireless toggle, and a software controlled estop.
These are interfaced to a high current solenoid that provides power to the motor controller
only when all three are active and if a single one determines unsafe behavior or is activated,

then the motors will be completely powerless.

The most important new safety feature is the
addition of a bright strobe indicator on the robot.
This light serves as a beacon to let both the
operators and passers-by that the robot is active and
running. The very bright flashing is also a constant

reminder to disable the motors for both the safety

and sanity of programmers. :
Figure 6 - Safety Light in both off (lower) and
mid-strobe (upper).

IV. Sensors

We use quite a number of sensors on our robot since it was designed for both IGVC and general

mobile robotics research. These sensors are as follow:
Quadrature Encoders

Encoders form the basis for our velocity estimation. We use encoders placed near the wheels
to determine our robot's velocity for position estimation and we use encoders placed on the
motor shafts for PID speed control. Because these encoders are quadrature, we get high
resolution and directional information from the two square wave signal outputs. These two
signals yield better results than using single direction encoders and needing to guess or have

another sensor to determine direction.



Analog Devices Gyro

We use the Analog Devices 150 degree/s gyro to determine our
current angular velocity. This sensor was tricky to calibrate as the
zero reference is dependent on temperature. Thankfully, the
sensor outputs its current temperature, and we were able to model
the bias versus temperature. This is an improvement over past
years, as before we had to wait 10 seconds while booting to

calibrate the bias. This is no longer needed, as the sensor is ready

to go instantaneously and can now also correct for a changing bias.  Figure 7 - ADXRS150 on
Custom PCB

GPS

We use the Novatel Propak V3 HP as our GPS receiver. This
receiver yields very accurate GPS information in open spaces,
but can have issues with some obstacles such as tall buildings
or trees. Omnistar HP correction allows a theoretical

precision of < .1m, but we typically see precisions of roughly

.4 m RMS. Figure 8 - Novatel Propak V3 HP

Compass
New this year is the addition of a PNI CompassPoint Prime. - .

This compass was generously donated to us by PNI e
Corporation. The main use for the compass is to determine E
our orientation in three dimensional space. It uses three axis i

compass and accelerometers to provide us with an accuracy

of 1 degree RMS in roll, pitch, and yaw. This is very useful for
determining when we are on unlevel surfaces as well as

Figure 9 - SICK Laser Range Finder
providing heading information while GPS is unavailable, (LIDAR)

inaccurate, or the vehicle is stationary.



LIDAR

Harlie avoids obstacles by the use of SICK Light Detection And Ranging (LIDAR). It uses a
rotating mirror to emit an infrared beam within a viewing angle of 180 degrees. With the
return of the reflected beam to the LIDAR, the range to obstacles can be detected. SICK has the
capability of working in the range of 10 cm to 80 m and can provide data at a rate of 500kbaud.
Another positive feature is that the LIDAR is an active device as it operates without an external
illumination. The main limitations to the SICK LIDAR are size, power stability requirements,

detection of low reflectivity objects, and rough terrain/ramps driving the plane into the ground.

Firewire Cameras

The Firefly MV from Point Grey Research was used to capture the
image stream to detect lines and obstacles. This camera uses a
1/3” wide-VGA CMOS sensor from Micron with a 752 x 480
resolution and a 1394a digital interface. A Senko lens was
secured to the camera and adjusted to maximize the depth-of-
field and provided for the widest angle. This wide angle lens

results in image distortion that must be corrected, but is easily

compensated for using the OpenCV computer vision library. - -
Figure 10 - Firefly MV Camera

V. Lower Level Software - National Instruments Compact RIO (cRIO)

This year, we split the software into two main sections: a real-time sensor based section to be
run on the National Instruments cRIO's FPGA and PowerPC processors and a higher level

planning and image manipulation section to be run on any networked computer.

The cRIO is responsible for gathering data from sensors, issuing commands to the motors, and

then filtering this data to gain an estimate of current position.
FPGA Sensor Readings

The most useful feature of the cRIO is the very large and powerful 40MHz FPGA onboard. This
interfaces through the cRIO's logic modules to digital inputs, digital outputs, analog inputs, and
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a serial interface. The largest change here from last year is the use of the FPGA for as much as
possible. This not only frees up the real-time PowerPC for computations, but also runs reliably
and safely since there is dedicated hardware for each sensor. We programmed the FPGA in
LabVIEW and currently read in all of the low level sensors through the FPGA, including all four
encoders, the analog gyro, voltage monitoring of the central power generation, and even parse
the serial bytes from the GPS and the compass into hexadecimal representation of floating

point numbers for transport to the real-time target.

Motor Commands, PID Generation, Speed Control, and Radio Control

Our FPGA is also responsible for physically moving

RPIDSpecd [P0 [T ]
the robot. The current configuration receives zz
commands from the trajectory planner as a left jﬂﬂ \ l H .
wheel speed and a right wheel speed. These are Zé mﬂﬁ " [I
then sent through a Pl feedback loop using the ) 222 ' ' “ ‘”'h
motor controllers. We chose to not use the fﬂﬂ
programmed Derivative feedback, as an “aseina 664713

Time

overdamped system performs more safely and with  Figure 11 - PID Command (Black) and Motor
Output Speed (Red) - Note failure at very high

more predictable motion than a critically damped frequency on far right.

system. This results in the robot quickly reaching its desired speeds but without very rapid

acceleration and possible oscillation.

For safety, the FPGA continuously monitors the change in motor encoders from one PID
iteration to the next. If this value goes over a set speed limit: usually 1.2m/s, but will change to
2m/s for IGVC, then the value will be limited. If anything were to happen such that the FPGA
loses control of the motors or power is lost to the FPGA but not the motor controller, the FPGA
has an output that controls a solid state relay connected in series with the other emergency
stops. This prevents software or hardware crashes from becoming dangerous as the robot will

simply stop and not continue forward.



The FPGA also handles interpreting the pulse width modulated signals from an RC receiver.
This can be used to drive the robot by hand without the need for any other software or

computer to be running or operational.
Localization and the Physical State Observer (PSO)

The last task for the cRIO and the only task for the PowerPC is to filter the sensor readings
reported by the FPGA and report the current best guess plus Gaussian distributed standard
deviations of error on that position. For this task, we are currently using an Extended Kalman

Filter.

A Kalman Filter is an optimal linear filter and applies for any signals and estimated values that
are linear and have zero-mean Gaussian distributed noise in the system. Applying this filter to
non-linear systems yields poor results, so Extended Kalman Filters can be applied to
approximate a non-linear function as a linear model using the Jacobian matrix (first derivatives)

to estimate the covariance matrix of the nonlinear function. Our equations are as follow:

Predicted state xp = nonlinear function —» f(previous state)

Our state consists of [x position,y position, heading, velocity, angular velocity]

Predicted covariance matrix Pp = F P * F' + Q

Measurement residual y = zk — h(previous state)

Our sensors include [gpsX, gpsY, compass heading, left encoder change, right encoder change,
and current angular velocity from the gyro

Residual Covariance S = H « Pp*H' + R

Kalman Gain K = P « H' x §™1

Final State Estimatex = xp+ K *xy

Final Covariance Estimate P=Pp — P xK x H

f is a nonlinear model of the dynamics of the system

F is the Jacobian matrix of the update model f

h is a nonlinear model of the predicted sensor values according to the predicted state
H is the Jacobian matrix of the sensor model h

zk is the actual measurement taken by the sensor



The most obvious problem with the Extended Kalman filter is that it is a non-optimal estimator
of state. We often see cases where the highly non-linear nature of rotation makes the
covariance matrix break down for a few iterations and underestimate the true variance in
values until the rotation ends and a new linear approximation is converged. Despite these
shortcomings, our localization is very precise (within .1m) as long as the GPS receiver's

variances that are reported are correct. Omnistar HP tends to underestimate the true errorin
its position if obscured by obstacles.

Figure 12 - Test Run Variances Without (Above Left) and With Omnistar (Above Right)
- Stationary GPS points and variance (Center Left) and Omnistar points and reported variance (R)
- Estimated Values while obscured by building (Lower Left) and Obscured by large tree (Lower R.)



VI. Upper Level Software

The higher level computation is preformed on an Intel i7 based computer over the network.

The Physical State Observer reports the position of the robot over the network to ROS (Robot

Operating System), which then also takes input from the LIDAR and the cameras to make

decisions about how and where to travel.
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Figure 13 - Upper Level Software Architecture

Plan for Path Following

In order to follow a path defined by an
ordered list of waypoints, we have a three
step process. First, we get the first waypoint
off the list and give it to our Global_planner.
In the second step, the Global_planner uses
that desired destination, our current position
and the obstacle map to compute the single-

source shortest path through the map. See

Figure 12 for a visualization of the shortest

sensor_msgs/LaserScan SENsor sources

sensor_msgs/PolntCloud

provided node
|l optional provided node
platform specific node

Figure 14 - Global_planner Visualization

path in an indoor environment. In order to do

that, we use Dijkstra's algorithm. We take this shortest path and pass that off to the
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Local_planner (see Plan for Control Decisions
section) for further processing. If the obstacle

map or our current position deviates too much

from their values when the shortest path was

calculated, that path is invalidated and

recalculated. Once we have reached our goal

within tolerances (0.5 meters), the third step in

path following is to remove the top waypoint that Figure 15 - Trajectory (local_planner) Illustration

we just completed from the ordered list and return to step one until the ordered list is empty.

Plan for Control Decisions

In our system, control decisions are handled by the Local_planner. This subsystem receives a
shortest path from the Global_planner and obstacle map information and is designed to follow
that path as closely as possible, while minimizing the amount of time it takes to safely traverse
that path. See Figure 13 for a graphic of the results of the forward simulation done by the
Local_planner for a number of possible controls. Our Local_planner uses the Dynamic Window
Approach (DWA), originally described in The dynamic window approach to collision avoidance
by D. Fox, W. Burgard, and S. Thrun. In short, DWA uses the following 5 step process:

1. Discretely sample in the robot's control space (v, omega) where v is the translational
speed of the robot and omega is the angular speed.

2. For each sampled velocity, perform forward simulation from the robot's current state to
predict what would happen if the sampled controls were applied for some short period
of time.

3. Evaluate (score) each trajectory resulting from the forward simulation, where a high
score is awarded to the set of controls that maximizes proximity to the goal, proximity
to the global path and speed, minimizes proximity to obstacles, and does not resultin a
collision with an obstacle.

4. Pick the highest-scoring trajectory and send the associated controls to the steering
subsystem.

5. Go back to step one and repeat

11



How the vehicle deals with complex obstacles including switchbacks and center islands, traps
and potholes

In order to deal with complex obstacle arrangement and environments, we retain obstacle
information from system initialization. In essence, we do not forget what we have previously
seen. In order to do this efficiently, we maintain two obstacle maps. One is a 6 meter by 6
meter square rolling window centered on the robot and is used by the Local_planner when
forward simulating possible control vectors. In order for the Local_planner to update quickly,
we need to keep this map reasonably small. In contrast, we use a 100 meter by 100 meter map
that has a fixed origin at our initialization position; this map is not a rolling window and is
meant to accumulate knowledge about the environment as we run a given course. By building
off our previous obstacle maps, each time the Global_planner is run it has more and more
information available to it. Because of this, we are able to remember the complex obstacle,
such as a switchback and, after sensing the impassable end, plan back around the switchback in
order to continue on to our goal. The same logic applies for other complex obstacles that are

detected and placed in the obstacle map.

Accuracy of arrival at navigation waypoints

By using the Omnistar HP high-precision DGPS service, we are able to achieve very good
accuracy when reaching a navigation waypoint. Under optimal Omnistar HP, we can reach one
of these points within 0.05 meters. Under normal GPS conditions, we can reach a navigation

waypoint within 0.5 meters.

Distance at which obstacles are detected

Using our SICK LIDAR, we are able to detect obstacles at a range of up to 80 meters with
centimeter accuracy. In order to reduce the number of false detections that could occur from
very distant pings bouncing off a hill or other change in ground elevation, for example, we limit
the distance to approximately 25 meters. This is still plenty of distance to allow the navigation
subsystems time to plan around obstacles and maintain a high rate of speed along the entire

path.
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Reaction times

The Local_planner, responsible for generating the control vectors for the robot, runs at a rate of
20 Hz. This allows us to react to an obstacle within 50 milliseconds of detection, which, at our
upper speed limit of 5 miles per hour, is plenty of time to either avoid the obstacle smoothly
while following the existing planned path or stop and allow the Global_planner to regenerate
shortest path information. In addition to this, the steering subsystem, running at a rate of 50
Hz, has access to a sonar sensor for ranging information. While a single sonar is too inaccurate
for mapping effectively, it is very useful for collision detection; the steering subsystem uses its
sonar to halt forward movement of the robot if an obstacle is within a half meter while still
allowing rotation. By allowing rotation, but not translation, we are able to steer away from the

obstacle while guaranteeing that we do not hit it.

Vision

Our vision algorithm in development currently uses the following steps:

1. Import raw image from camera.
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2. Transform into Top Down View, Crop, and Threshold based on texture -> Uniformity of local
area. This allows us to properly isolate the white lines and any other unnatural objects which

are likely to be obstacles.

3. Remove blobs that are of a size less than a certain threshold. This allows us to ignore

patches of dead grass or other small areas while generally preserving the structure of the lines.

4. Extend directional blobs based on elongation factor and resample to import to obstacle map.
This final step allows us to plan through both solid and dashed lines. The resampling allows us
to easily export the white lines as x and y pixel locations offset from the robot. The increase in
size of the lines is purposeful in that it expands the location of lines and barrels such that the

original width is roughly preserved.
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VII. Cost List

Part Description
Wheelchair base
Batteries

Bosch Aluminum Framing

Power Converters
Electrical Components

Wireless EStop
Sabertooth Speed Controller 2x25

SICK LIDAR

i7 Server

Network Equipment
Yaw Rate Gyro
Quadrature Encoders

CompassPoint Prime
Sonar
RS422-USB Converter

FireFly Camera
Camera Lens

RC Controls
NovaTel ProPak GPS
cRIO and Modules

Total

VIIl. Team Harlie

Chad Rockey - Electrical Engineering - Team Lead
540 Hours

Eric Perko - Computer Science - Software Lead
500 Hours

Ben Ballard - Computer Engineering

400 Hours

Retail Price
$3,000
S400
$1,000

$430
$850

$490
$125

$6,000
$700
$40
$80
$320

$400
$80
$80

$350
$150
$500
$5,490
$4,300

$19,115.00

Cost to team
S0
S400
$1,000

$430
$850

$490
$125

$6,000
$700
$40
$80
$320

S0
$80
$80

$350
$150
$500
$2,700
$4,300

$15,925.00
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